Protein kinase C-δ modulates apoptosis induced by hyperglycemia in adult ventricular myocytes

2002 ◽  
Vol 282 (5) ◽  
pp. H1625-H1634 ◽  
Author(s):  
Yukitaka Shizukuda ◽  
Mary E. Reyland ◽  
Peter M. Buttrick

We evaluated the direct effect of hyperglycemia on apoptosis of adult rat ventricular myocytes (ARVM) in vitro. Hyperglycemia (16.5 mM) for 24 h increased apoptosis by greater than threefold (48.2 ± 4.4%, by the TdT-mediated dUTP nick-end labeling method) compared with baseline (14.7 ± 2.5%). Hyperosmolarity with mannitol (11.0 mM) in the presence of 5.5 mM glucose also increased apoptosis by approximately twofold of baseline. Both glucose and mannitol treatment resulted in the membrane translocation of protein kinase C (PKC)-δ, and the activation of PKC-δ was confirmed by immune complex kinase assay. PKC-δ-specific translocation inhibitor peptide (δV1-1) attenuated only apoptosis induced by hyperglycemia but not by mannitol. A PKC-ɛ-specific translocation inhibitor peptide (ɛV1-1) affected neither type of apoptosis. Moderate overexpression of PKC-δ by adenovirus gene transfer prevented the antiapoptotic effect of δV1-1. Furthermore, δV1-1 attenuated the production of reactive oxygen species (ROS) by glucose. Taken together, our results indicate that increased ROS production regulated by PKC-δ is in part responsible for the induction of apoptosis by hyperglycemia and that apoptosis by hyperglycemia is mechanistically different from that by hyperosmolarity.

2002 ◽  
Vol 282 (1) ◽  
pp. H320-H327 ◽  
Author(s):  
Yukitaka Shizukuda ◽  
Peter M. Buttrick

We hypothesized that thromboxane A2 (TxA2) receptor stimulation directly induces apoptosis in adult cardiac myocytes. To investigate this, we exposed cultured adult rat ventricular myocytes (ARVM) to a TxA2 mimetic [1S-[1α,2α(Z),3β(1E,3S*),4α]]-7-[3-[3-hydroxy-4-(4-iodophenoxy)-1-butenyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid (I-BOP) for 24 h. Stimulation with I-BOP induced apoptosis in a dose-dependent manner and was completely prevented by a TxA2 receptor antagonist, SQ-29548. We further investigated the role of protein kinase C (PKC) in this process. TxA2 stimulation resulted in membrane translocation of PKC-ζ but not PKC-α, -βII, -δ, and -ε at 3 min and 1 h. The activation of PKC-ζ by I-BOP was confirmed using an immune complex kinase assay. Treatment of ARVM with a cell-permeable PKC-ζ pseudosubstrate peptide (ζ-PS) significantly attenuated apoptosis by I-BOP. In addition, I-BOP treatment decreased baseline Akt activity and its decrease was reversed by treatment with ζ-PS. The inhibition of phosphatidylinositol 3-kinase upstream of Akt by wortmannin or LY-294002 abolished the antiapoptotic effect of ζ-PS. Therefore, our results suggest that the activation of PKC-ζ modulates TxA2 receptor-mediated apoptosis at least, in part, through Akt activity in adult cardiac myocytes.


2000 ◽  
Vol 347 (3) ◽  
pp. 781-785 ◽  
Author(s):  
Paulus C. J. VAN DER HOEVEN ◽  
José C. M. VAN DER WAL ◽  
Paula RUURS ◽  
Wim J. VAN BLITTERSWIJK

14-3-3 proteins may function as adapter or scaffold proteins in signal transduction pathways. We reported previously that several 14-3-3 isotypes bind to protein kinase C (PKC)-ζ and facilitate coupling of PKC-ζ to Raf-1 [van der Hoeven, van der Wal, Ruurs, van Dijk and van Blitterswijk (2000) Biochem. J. 345, 297-306], an event that boosts the mitogen-activated protein kinase (ERK) pathway in Rat-1 fibroblasts. The present work investigated whether bound 14-3-3 would affect PKC-ζ activity. Using recombinant 14-3-3 proteins and purified PKC-ζ in a convenient, newly developed in vitro kinase assay, we found that 14-3-3 proteins stimulated PKC-ζ activity in a dose-dependent fashion up to approx. 2.5-fold. Activation of PKC-ζ by 14-3-3 isotypes was unrelated to their mutual affinity, estimated by co-immunoprecipitation from COS cell lysates. Accordingly, PKC-ζ with a defective (point-mutated) 14-3-3-binding site, showed the same 14-3-3-stimulated activity as wild-type PKC-ζ. As 14-13-3 proteins are acidic, we tested several other acidic proteins, which turned out to stimulate PKC-ζ activity in a similar fashion, whereas neutral or basic proteins did not. These effects were not restricted to the atypical PKC-ζ, but were also found for classical PKC. Together, the results suggest that the stimulation of PKC activity by 14-3-3 proteins is non-specific and solely due to the acidic nature of these proteins, quite similar to that known for acidic lipids.


1997 ◽  
Vol 272 (5) ◽  
pp. H2485-H2491 ◽  
Author(s):  
V. Rybin ◽  
S. F. Steinberg

Although calcium-insensitive protein kinase C (PKC) isoforms (PKC-epsilon and PKC-delta) are consistently detected in adult ventricular myocytes, the evidence that adult ventricular myocytes also express calcium-sensitive PKC-alpha is inconsistent. The current study used four different anti-PKC-alpha-antibodies to resolve some of the uncertainties regarding the immunodetection of PKC-alpha in adult ventricular myocytes. Three of the antibodies used in this study barely (GIBCO-BRL) or rather faintly (Transduction Laboratories and Seikagaku America) recognize PKC-alpha in crude preparations from adult ventricular myocytes. Although each of these antibodies recognizes a prominent 80-kDa band, which is similar in size to PKC-alpha, this represents nonspecific immunoreactivity and should not be confused with PKC-alpha. This conclusion is based on peptide-blocking experiments (GIBCO-BRL), the absence of the requisite sensitivity to calcium- and phorbol 12-myristate 13-acetate-induced translocation (Seikagaku America and Transduction Laboratories), and/or the failure to copurify with PKC-alpha on DEAE-Sephacel chromatography. Nevertheless, an antibody from Upstate Biotechnology clearly recognizes PKC-alpha and not other unrelated nonspecific immunoreactive species in crude preparations from adult ventricular myocytes. Each of the antisera used in this study could detect PKC-alpha immunoreactivity following chromatographic purification of the samples to enrich for PKC-alpha and remove nonspecific immunoreactive proteins. These results suggest that PKC-alpha is expressed by adult ventricular myocytes and argue that differences in the sensitivity and/or specificity of available antisera contribute to at least some of the confusion regarding PKC-alpha expression in adult ventricular myocytes.


1987 ◽  
Vol 7 (12) ◽  
pp. 4280-4289 ◽  
Author(s):  
A M Pendergast ◽  
J A Traugh ◽  
O N Witte

Viral transduction and chromosomal translocations of the c-abl gene result in the synthesis of abl proteins with structurally altered amino termini. These altered forms of the abl protein, but not the c-abl proteins, are detectably phosphorylated on tyrosine in vivo. In contrast, all forms of the abl protein are phosphorylated on serine following in vivo labeling with Pi. Treatment of NIH-3T3 cells with protein kinase C activators resulted in a four- to eightfold increase in the phosphorylation of murine c-abl due to modification of two serines on the c-abl protein. Purified protein kinase C phosphorylated all abl proteins at the same two sites. Both sites are precisely conserved in murine and human abl proteins. The sites on the abl proteins were found near the carboxy terminus. In contrast, for the epidermal growth factor receptor (T. Hunter, N. Ling, and J. A. Cooper, Nature [London] 311:480-483, 1984) and pp60src (K. L. Gould, J. R. Woodgett, J. A. Cooper, J. E. Buss, D. Shalloway, and T. Hunter, Cell 42:849-857, 1985), the sites of protein kinase C phosphorylation are amino-terminal to the kinase domain. The abl carboxy-terminal region is not necessary for the tyrosine kinase activity or transformation potential of the viral abl protein and may represent a regulatory domain. Using an in vitro immune complex kinase assay, we were not able to correlate reproducible changes in c-abl activity with phosphorylation by protein kinase C. However, the high degree of conservation of the phosphorylation sites for protein kinase C between human and mouse abl proteins suggests an important functional role.


2001 ◽  
Vol 281 (2) ◽  
pp. C649-C661 ◽  
Author(s):  
Jaekyung Cecilia Song ◽  
Celina M. Hanson ◽  
Vance Tsai ◽  
Omid C. Farokhzad ◽  
Margaret Lotz ◽  
...  

The phorbol ester phorbol 12-myristate 13-acetate (PMA) inhibits Cl− secretion (short-circuit current, I sc) and decreases barrier function (transepithelial resistance, TER) in T84 epithelia. To elucidate the role of specific protein kinase C (PKC) isoenzymes in this response, we compared PMA with two non-phorbol activators of PKC (bryostatin-1 and carbachol) and utilized three PKC inhibitors (Gö-6850, Gö-6976, and rottlerin) with different isozyme selectivity profiles. PMA sequentially inhibited cAMP-stimulated I sc and decreased TER, as measured by voltage-current clamp. By subcellular fractionation and Western blot, PMA (100 nM) induced sequential membrane translocation of the novel PKCε followed by the conventional PKCα and activated both isozymes by in vitro kinase assay. PKCδ was activated by PMA but did not translocate. By immunofluorescence, PKCε redistributed to the basolateral domain in response to PMA, whereas PKCα moved apically. Inhibition of I sc by PMA was prevented by the conventional and novel PKC inhibitor Gö-6850 (5 μM) but not the conventional isoform inhibitor Gö-6976 (5 μM) or the PKCδ inhibitor rottlerin (10 μM), implicating PKCε in inhibition of Cl− secretion. In contrast, both Gö-6976 and Gö-6850 prevented the decline of TER, suggesting involvement of PKCα. Bryostatin-1 (100 nM) translocated PKCε and PKCα and inhibited cAMP-elicited I sc. However, unlike PMA, bryostatin-1 downregulated PKCα protein, and the decrease in TER was only transient. Carbachol (100 μM) translocated only PKCε and inhibited I sc with no effect on TER. Gö-6850 but not Gö-6976 or rottlerin blocked bryostatin-1 and carbachol inhibition of I sc. We conclude that basolateral translocation of PKCε inhibits Cl−secretion, while apical translocation of PKCα decreases TER. These data suggest that epithelial transport and barrier function can be modulated by distinct PKC isoforms.


2005 ◽  
Vol 289 (6) ◽  
pp. H2484-H2490 ◽  
Author(s):  
Ken Yamamura ◽  
Charles Steenbergen ◽  
Elizabeth Murphy

Activation of protein kinase C (PKC) is cardioprotective, but the mechanism(s) by which PKC mediates protection is not fully understood. Inasmuch as PKC has been well documented to modulate sarcoplasmic reticulum (SR) Ca2+ and because altered SR Ca2+ handling during ischemia is involved in cardioprotection, we examined the role of PKC-mediated alterations of SR Ca2+ in cardioprotection. Using isolated adult rat ventricular myocytes, we found that addition of 1,2-dioctanoyl- sn-glycerol (DOG), to activate PKC under conditions that reduced myocyte death associated with simulated ischemia and reperfusion, also reduced SR Ca2+. Cell death was 57.9 ± 2.9% and 47.3 ± 1.8% in untreated and DOG-treated myocytes, respectively ( P < 0.05). Using fura 2 fluorescence to monitor Ca2+ transients and caffeine-releasable SR Ca2+, we examined the effect of DOG on SR Ca2+. Caffeine-releasable SR Ca2+ was significantly reduced (by ∼65%) after 10 min of DOG treatment compared with untreated myocytes ( P < 0.05). From our examination of the mechanism by which PKC alters SR Ca2+, we present the novel finding that DOG treatment reduced the phosphorylation of phospholamban (PLB) at Ser16. This effect is mediated by PKC-ε, because a PKC-ε-selective inhibitory peptide blocked the DOG-mediated decrease in phosphorylation of PLB and abolished the DOG-induced reduction in caffeine-releasable SR Ca2+. Using immunoprecipitation, we further demonstrated that DOG increased the association between protein phosphatase 1 and PLB. These data suggest that activated PKC-ε reduces SR Ca2+ content through PLB dephosphorylation and that reduced SR Ca2+ may be important in cardioprotection.


1987 ◽  
Vol 7 (12) ◽  
pp. 4280-4289
Author(s):  
A M Pendergast ◽  
J A Traugh ◽  
O N Witte

Viral transduction and chromosomal translocations of the c-abl gene result in the synthesis of abl proteins with structurally altered amino termini. These altered forms of the abl protein, but not the c-abl proteins, are detectably phosphorylated on tyrosine in vivo. In contrast, all forms of the abl protein are phosphorylated on serine following in vivo labeling with Pi. Treatment of NIH-3T3 cells with protein kinase C activators resulted in a four- to eightfold increase in the phosphorylation of murine c-abl due to modification of two serines on the c-abl protein. Purified protein kinase C phosphorylated all abl proteins at the same two sites. Both sites are precisely conserved in murine and human abl proteins. The sites on the abl proteins were found near the carboxy terminus. In contrast, for the epidermal growth factor receptor (T. Hunter, N. Ling, and J. A. Cooper, Nature [London] 311:480-483, 1984) and pp60src (K. L. Gould, J. R. Woodgett, J. A. Cooper, J. E. Buss, D. Shalloway, and T. Hunter, Cell 42:849-857, 1985), the sites of protein kinase C phosphorylation are amino-terminal to the kinase domain. The abl carboxy-terminal region is not necessary for the tyrosine kinase activity or transformation potential of the viral abl protein and may represent a regulatory domain. Using an in vitro immune complex kinase assay, we were not able to correlate reproducible changes in c-abl activity with phosphorylation by protein kinase C. However, the high degree of conservation of the phosphorylation sites for protein kinase C between human and mouse abl proteins suggests an important functional role.


2001 ◽  
Vol 94 (6) ◽  
pp. 1096-1104 ◽  
Author(s):  
Noriaki Kanaya ◽  
Paul A. Murray ◽  
Derek S. Damron

Background The objectives were to determine the extent and mechanism of action by which propofol increases myofilament Ca2+ sensitivity and intracellular pH (pHi) in ventricular myocytes. Methods Freshly isolated adult rat ventricular myocytes were used for the study. Cardiac myofibrils were extracted for assessment of myofibrillar actomyosin adenosine triphosphatase (ATPase) activity. Myocyte shortening (video edge detection) and pHi (2',7'-bis-(2-carboxyethyl)-5(6')-carboxyfluorescein, 500/440 ratio) were monitored simultaneously in individual cells field-stimulated (0.3 Hz) and superfused with HEPES-buffered solution (pH 7.4, 30 degrees C). Results Propofol (100 microM) reduced the Ca2+ concentration required for activation of myofibrillar actomyosin ATPase from pCa 5.7 +/- 0.01 to 6.6 +/- 0.01. Increasing pHi (7.05 +/- 0.03 to 7.39 +/- 0.04) with NH4Cl increased myocyte shortening by 35 +/- 12%. Washout of NH4Cl decreased pHi to 6.82 +/- 0.03 and decreased myocyte shortening to 52 +/- 10% of control. Propofol caused a dose-dependent increase in pHi but reduced myocyte shortening. The propofol-induced increase in pHi was attenuated, whereas the decrease in myocyte shortening was enhanced after pretreatment with ethylisopropyl amiloride, a Na+-H+ exchange inhibitor, or bisindolylmaleimide I, a protein kinase C inhibitor. Propofol also attenuated the NH4Cl-induced intracellular acidosis, increased the rate of recovery from acidosis, and attenuated the associated decrease in myocyte shortening. Propofol caused a leftward shift in the extracellular Ca2+-shortening relation, and this effect was attenuated by ethylisopropyl amiloride. Conclusions These results suggest that propofol increases the sensitivity of myofibrillar actomyosin ATPase to Ca2+ (ie., increases myofilament Ca2+ sensitivity), at least in part by increasing pHi via protein kinase C-dependent activation of Na+-H+ exchange.


Sign in / Sign up

Export Citation Format

Share Document