pkc epsilon
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 8)

H-INDEX

28
(FIVE YEARS 1)

Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1288
Author(s):  
Carol A. Heckman ◽  
Tania Biswas ◽  
Douglas M. Dimick ◽  
Marilyn L. Cayer

Protein kinase Cs (PKCs) are activated by lipids in the plasma membrane and bind to a scaffold assembled on the epidermal growth factor (EGF) receptor (EGFR). Understanding how this complex is routed is important, because this determines whether EGFR is degraded, terminating signaling. Here, cells were preincubated in EGF-tagged gold nanoparticles, then allowed to internalize them in the presence or absence of a phorbol ester PKC activator. PKC colocalized with EGF-tagged nanoparticles within 5 min and migrated with EGFR-bearing vesicles into the cell. Two conformations of PKC-epsilon were distinguished by different primary antibodies. One, thought to be enzymatically active, was on endosomes and displayed a binding site for antibody RR (R&D). The other, recognized by Genetex green (GG), was soluble, on actin-rich structures, and loosely bound to vesicles. During a 15-min chase, EGF-tagged nanoparticles entered large, perinuclear structures. In phorbol ester-treated cells, vesicles bearing EGF-tagged nanoparticles tended to enter this endocytic recycling compartment (ERC) without the GG form. The correlation coefficient between the GG (inactive) and RR conformations on vesicles was also lower. Thus, active PKC has a Charon-like function, ferrying vesicles to the ERC, and inactivation counteracts this function. The advantage conferred on cells by aggregating vesicles in the ERC is unclear.


2020 ◽  
Vol 118 (3) ◽  
pp. 243a
Author(s):  
Juan C. Gomez-Fernandez ◽  
Senena Corbalán-García ◽  
Alessio Ausili
Keyword(s):  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Matthew Swire ◽  
Yuri Kotelevtsev ◽  
David J Webb ◽  
David A Lyons ◽  
Charles ffrench-Constant

Experience and changes in neuronal activity can alter CNS myelination, but the signalling pathways responsible remain poorly understood. Here we define a pathway in which endothelin, signalling through the G protein-coupled receptor endothelin receptor B and PKC epsilon, regulates the number of myelin sheaths formed by individual oligodendrocytes in mouse and zebrafish. We show that this phenotype is also observed in the prefrontal cortex of mice following social isolation, and is associated with reduced expression of vascular endothelin. Additionally, we show that increasing endothelin signalling rescues this myelination defect caused by social isolation. Together, these results indicate that the vasculature responds to changes in neuronal activity associated with experience by regulating endothelin levels, which in turn affect the myelinating capacity of oligodendrocytes. This pathway may be employed to couple the metabolic support function of myelin to activity-dependent demand and also represents a novel mechanism for adaptive myelination.


2019 ◽  
Vol 53 (3) ◽  
pp. 154-164 ◽  
Author(s):  
Somchit Eiam-Ong ◽  
Mookda Chaipipat ◽  
Krissanapong Manotham ◽  
Somchai Eiam-Ong

AbstractObjectives. Aldosterone rapidly enhances protein kinase C (PKC) alpha and beta1 proteins in the rat kidney. The G protein-coupled receptor 30 (GPR30)-mediated PKC pathway is involved in the inhibition of the potassium channel in HEK-239 cells. GPR30 mediates rapid actions of aldosterone in vitro. There are no reports available regarding the aldosterone action on other PKC isoforms and GPR30 proteins in vivo. The aim of the present study was to examine rapid actions of aldosterone on protein levels of phosphorylated PKC (p-PKC) delta, p-PKC epsilon, and GPR30 simultaneously in the rat kidney.Methods. Male Wistar rats were intraperitoneally injected with normal saline solution or aldosterone (150 µg/kg body weight). After 30 minutes, abundance and immunoreactivity of p-PKC delta, p-PKC epsilon, and GPR30 were determined by Western blot analysis and immunohisto-chemistry, respectively.Results. Aldosterone administration significantly increased the renal protein abundance of p-PKC delta by 80% (p<0.01) and decreased p-PKC epsilon protein by 50% (p<0.05). Aldosterone injection enhanced protein immunoreactivity of p-PKC delta but suppressed p-PKC epsilon protein intensity in both kidney cortex and medulla. Protein abundance of GPR30 was elevated by aldosterone treatment (p<0.05), whereas the immunoreactivity was obviously changed in the kidney cortex and inner medulla. Aldosterone translocated p-PKC delta and GPR30 proteins to the brush border membrane of proximal convoluted tubules.Conclusions. This is the first in vivo study simultaneously demonstrating that aldosterone administration rapidly elevates protein abundance of p-PKC delta and GPR30, while p-PKC epsilon protein is suppressed in rat kidney. The stimulation of p-PKC delta protein levels by aldosterone may be involved in the activation of GPR30.


Cytoskeleton ◽  
2018 ◽  
Vol 75 (8) ◽  
pp. 363-371 ◽  
Author(s):  
Michael A. Mkrtschjan ◽  
Christopher Solís ◽  
Admasu Y. Wondmagegn ◽  
Janki Majithia ◽  
Brenda Russell

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Melanie von Brandenstein ◽  
Monika Schlosser ◽  
Jan Herden ◽  
Axel Heidenreich ◽  
Stefan Störkel ◽  
...  

The identification of benign renal oncocytoma, its differentiation from malignant renal tumors, and their eosinophilic variants are a continuous challenge, influencing preoperative planning and being an unnecessary stress factor for patients. Regressive changes enhance the diagnostic dilemma, making evaluations by frozen sections or by immunohistology (on biopsies) unreliable. MicroRNAs (miRs) have been proposed as novel biomarkers to differentiate renal tumor subtypes. However, their value as a diagnostic biomarker of oncocytoma in urines based on mechanisms known in oncocytomas has not been exploited. We used urines from patients with renal tumors (oncocytoma, renal cell carcinoma: clear cell, papillary, chromophobe) and with other urogenital lesions. miRs were extracted and detected via qRT-PCR, the respective tumors analyzed by immunohistology. We found isocitrate dehydrogenase 2 upregulated in oncocytoma and oncocytic chromophobe carcinoma, indicating an increased Krebs cycle metabolism. Since we had shown that all renal tumors are stimulated by endothelin-1, we analyzed miRs preidentified by microarray after endothelin-1 stimulation of renal epithelial cells. Four miRs are proposed as presurgical urinary biomarkers due to their known regulatory mechanism in oncocytoma: miR-498 (formation of the oncocytoma-specific slice-form of vimentin, Vim3), miR-183 (associated with increased CO2 levels), miR-205, and miR-31 (signaling through downregulation of PKC epsilon, shown previously).


Sign in / Sign up

Export Citation Format

Share Document