Do adult rat ventricular myocytes express protein kinase C-alpha?

1997 ◽  
Vol 272 (5) ◽  
pp. H2485-H2491 ◽  
Author(s):  
V. Rybin ◽  
S. F. Steinberg

Although calcium-insensitive protein kinase C (PKC) isoforms (PKC-epsilon and PKC-delta) are consistently detected in adult ventricular myocytes, the evidence that adult ventricular myocytes also express calcium-sensitive PKC-alpha is inconsistent. The current study used four different anti-PKC-alpha-antibodies to resolve some of the uncertainties regarding the immunodetection of PKC-alpha in adult ventricular myocytes. Three of the antibodies used in this study barely (GIBCO-BRL) or rather faintly (Transduction Laboratories and Seikagaku America) recognize PKC-alpha in crude preparations from adult ventricular myocytes. Although each of these antibodies recognizes a prominent 80-kDa band, which is similar in size to PKC-alpha, this represents nonspecific immunoreactivity and should not be confused with PKC-alpha. This conclusion is based on peptide-blocking experiments (GIBCO-BRL), the absence of the requisite sensitivity to calcium- and phorbol 12-myristate 13-acetate-induced translocation (Seikagaku America and Transduction Laboratories), and/or the failure to copurify with PKC-alpha on DEAE-Sephacel chromatography. Nevertheless, an antibody from Upstate Biotechnology clearly recognizes PKC-alpha and not other unrelated nonspecific immunoreactive species in crude preparations from adult ventricular myocytes. Each of the antisera used in this study could detect PKC-alpha immunoreactivity following chromatographic purification of the samples to enrich for PKC-alpha and remove nonspecific immunoreactive proteins. These results suggest that PKC-alpha is expressed by adult ventricular myocytes and argue that differences in the sensitivity and/or specificity of available antisera contribute to at least some of the confusion regarding PKC-alpha expression in adult ventricular myocytes.

2006 ◽  
Vol 104 (5) ◽  
pp. 970-977 ◽  
Author(s):  
Peter J. Wickley ◽  
Xueqin Ding ◽  
Paul A. Murray ◽  
Derek S. Damron

Background Myocardial protection by anesthetics is known to involve activation of protein kinase C (PKC). The authors' objective was to identify the PKC isoforms activated by propofol in rat ventricular myocytes. They also assessed the intracellular location of individual PKC isoforms before and after treatment with propofol. Methods Freshly isolated ventricular myocytes were obtained from adult rat hearts. Immunoblot analysis of cardiomyocyte subcellular fractions was used to assess translocation of individual PKC isoforms before and after exposure to propofol. An enzyme-linked immunosorbent assay kit was used for measuring PKC activity. Immunocytochemistry and confocal microscopy were used to visualize the intracellular location of the individual PKC isoforms. Results Under baseline conditions, PKC-alpha, PKC-delta, and PKC-zeta were associated with both the cytosolic and membrane fractions, whereas PKC-epsilon was exclusively located in the cytosolic fraction. Propofol (10 microM) caused translocation of PKC-alpha, PKC-delta, PKC-epsilon, and PKC-zeta from cytosolic to membrane fraction and increased total PKC activity (211 +/- 17% of baseline; P = 0.003) in a dose-dependent manner. Immunocytochemical localization of the individual PKC isoforms demonstrated that propofol caused translocation of PKC-alpha to the intercalated discs and z-lines; PKC-delta to the perinuclear region; PKC-epsilon to sites associated with the z-lines, intercalated discs, and the sarcolemma; and PKC-zeta to the nucleus. Conclusions These results demonstrate that propofol causes an increase in PKC activity in rat ventricular myocytes. Propofol stimulates translocation of PKC-alpha, PKC-delta, PKC-epsilon, and PKC-zeta to distinct intracellular sites in cardiomyocytes. This may be a fundamentally important cellular mechanism of anesthesia-induced myocardial protection in the setting of ischemia-reperfusion injury.


1995 ◽  
Vol 269 (3) ◽  
pp. H1087-H1097 ◽  
Author(s):  
A. Clerk ◽  
M. A. Bogoyevitch ◽  
S. J. Fuller ◽  
A. Lazou ◽  
P. J. Parker ◽  
...  

The expression of protein kinase C (PKC) isoforms (PKC-alpha, PKC-beta 1, PKC-delta, PKC-epsilon, and PKC-zeta) was studied by immunoblotting in whole ventricles of rat hearts during postnatal development (1-26 days) and in the adult. PKC-alpha, PKC-beta 1, PKC-delta, PKC-epsilon, and PKC-zeta were detected in ventricles of 1-day-old rats, although PKC-alpha and PKC-beta 1 were only barely detectable. All isoforms were rapidly downregulated during development, with abundances relative to total protein declining in the adult to < 25% of 1-day-old values. PKC-beta 1 was not detectable in adult ventricles. The specific activity of PKC was also downregulated. The rat ventricular myocyte becomes amitotic soon after birth but continues to grow, increasing its protein content 40- to 50-fold between the neonate and the 300-g adult. An important question is thus whether the amount of PKC per myocyte is downregulated. With the use of isolated cells, immunoblotting showed that the contents per myocyte of PKC-alpha and PKC-epsilon increased approximately 10-fold between the neonatal and adult stages. In rat ventricles, the rank of association with the particulate fraction was PKC-delta > PKC-epsilon > PKC-zeta. Association of these isoforms with the particulate fraction was less in the adult than in the neonate. In primary cultures of ventricular myocytes prepared from neonatal rat hearts, 1 microM 12-O-tetradecanoylphorbol-13-acetate (TPA) elicited translocation of PKC-alpha, PKC-delta, and PKC-epsilon from the soluble to the particulate fraction in < 1 min, after which time no further translocation was observed. Prolonged exposure (16 h) of myocytes to 1 microM TPA caused essentially complete downregulation of these isoforms, although downregulation of PKC-epsilon was slower than for PKC-delta. In contrast, PKC-zeta was neither translocated nor downregulated by 1 microM TPA. Immunoblotting of human ventricular samples also revealed downregulation of PKC relative to total protein during fetal/postnatal development.


1995 ◽  
Vol 308 (1) ◽  
pp. 177-180 ◽  
Author(s):  
K Yamada ◽  
A Avignon ◽  
M L Standaert ◽  
D R Cooper ◽  
B Spencer ◽  
...  

Protein kinase C (PKC)-theta is a newly recognized major PKC isoform in skeletal muscle. In this study we found that insulin provoked rapid biphasic increases in membrane-associated immunoreactive PKC-theta, as well as PKC-alpha, PKC-beta and PKC-epsilon, in rat soleus muscles incubated in vitro. Effects of insulin on PKC isoforms in the soleus were comparable in magnitude with those of phorbol esters. Increases in membrane-associated PKC-theta, PKC-alpha, PKC-beta and PKC-epsilon were also observed in rat gastrocnemius muscles after insulin treatment in vivo. Our findings suggest that PKC-theta, like other diacylglycerol-sensitive PKC isoforms (alpha, beta and epsilon), may play a role in insulin action in skeletal muscles.


2002 ◽  
Vol 282 (1) ◽  
pp. H320-H327 ◽  
Author(s):  
Yukitaka Shizukuda ◽  
Peter M. Buttrick

We hypothesized that thromboxane A2 (TxA2) receptor stimulation directly induces apoptosis in adult cardiac myocytes. To investigate this, we exposed cultured adult rat ventricular myocytes (ARVM) to a TxA2 mimetic [1S-[1α,2α(Z),3β(1E,3S*),4α]]-7-[3-[3-hydroxy-4-(4-iodophenoxy)-1-butenyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid (I-BOP) for 24 h. Stimulation with I-BOP induced apoptosis in a dose-dependent manner and was completely prevented by a TxA2 receptor antagonist, SQ-29548. We further investigated the role of protein kinase C (PKC) in this process. TxA2 stimulation resulted in membrane translocation of PKC-ζ but not PKC-α, -βII, -δ, and -ε at 3 min and 1 h. The activation of PKC-ζ by I-BOP was confirmed using an immune complex kinase assay. Treatment of ARVM with a cell-permeable PKC-ζ pseudosubstrate peptide (ζ-PS) significantly attenuated apoptosis by I-BOP. In addition, I-BOP treatment decreased baseline Akt activity and its decrease was reversed by treatment with ζ-PS. The inhibition of phosphatidylinositol 3-kinase upstream of Akt by wortmannin or LY-294002 abolished the antiapoptotic effect of ζ-PS. Therefore, our results suggest that the activation of PKC-ζ modulates TxA2 receptor-mediated apoptosis at least, in part, through Akt activity in adult cardiac myocytes.


1996 ◽  
Vol 271 (1) ◽  
pp. F108-F113 ◽  
Author(s):  
M. B. Ganz ◽  
B. Saksa ◽  
R. Saxena ◽  
K. Hawkins ◽  
J. R. Sedor

In vitro and in vivo data suggest a remarkable plasticity in the differentiated phenotype of intrinsic glomerular cells, which after injury express new structures and functions. We have shown that a protein kinase C (PKC) isoform, beta II, is expressed in diseased but not normal glomeruli. Since intrarenal cytokine synthesis has been implicated in the pathogenesis of progressive glomerular injury, we have hypothesized that these mediators induce a change in isoform profile. To test this hypothesis in vitro, we have determined whether platelet-derived growth factor (PDGF) and interleukin-1 (IL-1) alter the expression or activation of PKC isoforms in cultured mesangial cells (MCs). By immunoblot and ribonuclease (RNase) protection assays, both PDGF and IL-1 induce as early as 2 h de novo synthesis of PKC-beta II. Since MCs constitutively express PKC-alpha, -beta I, and -zeta, we also determined whether IL-1 or PDGF alter the activity of these isoforms. PDGF maximally induced translocation of PKC-alpha (10 min), -beta I (90 min), -epsilon (120 min), and -zeta (120 min) from the cytosolic to the membrane fraction. IL-1, in contrast, did not alter the distribution of alpha, beta I, or epsilon at any time measured but did induce PKC-zeta translocation. These data suggest inflammatory mediators regulate PKC isoform activity in diseased glomeruli both by de novo synthesis of unexpressed isoforms and by activation of constitutively expressed PKC isoforms.


1993 ◽  
Vol 295 (3) ◽  
pp. 767-772 ◽  
Author(s):  
M Ohmichi ◽  
G Zhu ◽  
A R Saltiel

Protein kinase C (PKC) family members were examined in PC-12 rat pheochromocytoma cells to evaluate their role in the action of nerve growth factor (NGF). Immunoblot analysis of whole cell lysates using antibodies against various PKC isoforms revealed that PC-12 cells contained PKC-alpha, -delta, -epsilon and zeta. Assay of the protein kinase activity in these different anti-PKC immunoprecipitates demonstrated that NGF stimulated the kinase activity of PKC-epsilon, but not PKC-alpha, -delta and -zeta. Both histone phosphorylation and autophosphorylation of PKC-epsilon were increased by treatment of PC-12 cells with NGF. This increased phosphorylation observed in vitro is rapid, occurring maximally at 2.5 min and declining thereafter. Moreover, this effect of NGF is dose-dependent over physiological concentrations of the growth factor. Although the mechanistic basis for this specificity in PKC activation is not clear, NGF acutely stimulated the production of diacylglycerol without causing corresponding changes in intracellular Ca2+ concentrations. These results suggest that NGF may selectively stimulate the Ca(2+)-insensitive epsilon isoform of PKC by a phosphatidylinositol-independent mechanism.


1997 ◽  
Vol 272 (1) ◽  
pp. C263-C269 ◽  
Author(s):  
D. Zoukhri ◽  
R. R. Hodges ◽  
C. Sergheraert ◽  
A. Toker ◽  
D. A. Dartt

In the present study, we have synthesized and N-myristoylated peptides derived from the pseudosubstrate sequences of protein kinase C (PKC)-alpha, -delta, and -epsilon [Myr-PKC-alpha-(15-28), Myr-PKC-delta-(142-153), and Myr-PKC-epsilon-(149-164)], three isoforms present in rat lacrimal gland, and a peptide derived from the sequence of the endogenous inhibitor of protein kinase A [Myr-PKI-(17-25)]. Lacrimal gland acini were preincubated for 60 min with the myristoylated peptides (10(-10) to 3 x 10(-7) M), then protein secretion was stimulated with a phorbol ester, phorbol 12,13-dibutyrate (10(-6) M); vasoactive intestinal peptide (10(-8) M); a cholinergic agonist, carbachol (10(-5) M); or an alpha 1-adrenergic agonist, phenylephrine (10(-4) M), for 20 min. In intact lacrimal gland acini, Myr-PKC-alpha-(15-28) inhibited phorbol 12,13-dibutyrate-induced protein secretion. This effect was not reproduced by the acetylated peptide or by the myristoylated PKI, which inhibited vasoactive intestinal peptide-induced protein secretion, a response mediated by protein kinase A. Carbachol-induced protein secretion was inhibited by all three peptides. In contrast, phenylephrine-induced protein secretion was inhibited only by Myr-PKC-epsilon-(149-164), whereas Myr-PKC-alpha-(15-28) and Myr-PKC-delta-(142-153) had a stimulatory effect. None of these myristoylated peptides affected the calcium increase evoked by cholinergic or alpha 1-adrenergic agonists. We concluded that phorbol ester- and receptor-induced protein secretion involve different PKC isoforms in lacrimal gland.


2002 ◽  
Vol 282 (5) ◽  
pp. H1625-H1634 ◽  
Author(s):  
Yukitaka Shizukuda ◽  
Mary E. Reyland ◽  
Peter M. Buttrick

We evaluated the direct effect of hyperglycemia on apoptosis of adult rat ventricular myocytes (ARVM) in vitro. Hyperglycemia (16.5 mM) for 24 h increased apoptosis by greater than threefold (48.2 ± 4.4%, by the TdT-mediated dUTP nick-end labeling method) compared with baseline (14.7 ± 2.5%). Hyperosmolarity with mannitol (11.0 mM) in the presence of 5.5 mM glucose also increased apoptosis by approximately twofold of baseline. Both glucose and mannitol treatment resulted in the membrane translocation of protein kinase C (PKC)-δ, and the activation of PKC-δ was confirmed by immune complex kinase assay. PKC-δ-specific translocation inhibitor peptide (δV1-1) attenuated only apoptosis induced by hyperglycemia but not by mannitol. A PKC-ɛ-specific translocation inhibitor peptide (ɛV1-1) affected neither type of apoptosis. Moderate overexpression of PKC-δ by adenovirus gene transfer prevented the antiapoptotic effect of δV1-1. Furthermore, δV1-1 attenuated the production of reactive oxygen species (ROS) by glucose. Taken together, our results indicate that increased ROS production regulated by PKC-δ is in part responsible for the induction of apoptosis by hyperglycemia and that apoptosis by hyperglycemia is mechanistically different from that by hyperosmolarity.


1995 ◽  
Vol 310 (3) ◽  
pp. 975-982 ◽  
Author(s):  
S Spence ◽  
G Rena ◽  
G Sweeney ◽  
M D Houslay

The cAMP phosphodiesterase (PDE) activity of CHO cells was unaffected by the addition of Ca2+ +calmodulin (CaM), indicating the absence of any PDE1 (Ca2+/CaM-stimulated PDE) activity. Treatment with the tumour promoting phorbol ester phorbol 12-myristate 13-acetate (PMA) led to the rapid transient induction of PDE1 activity which attained a maximum value after about 13 h before slowly decreasing. Such induction was attenuated by actinomycin D. PCR primers were designed to hybridize with two regions identified as being characteristic of PDE1 forms found in various species and predicted to amplify a 601 bp fragment. RT-PCR using degenerate primers allowed an approx. 600 bp fragment to be amplified from RNA preparations of rat brain but not from CHO cells unless they had been treated with PMA. CHO cells transfected to overexpress protein kinase C (PKC)-alpha and PKC-epsilon, but not those transfected to overexpress PKC-beta I or PKC-gamma, exhibited a twofold higher PDE activity. They also expressed a PDE1 activity, with Ca2+/CaM effecting a 1.8-2.8-fold increase in total PDE activity. RT-PCR, with PDE1-specific primers, identified an approx. 600 bp product in CHO cells transfected to overexpress PKC-alpha and PKC-epsilon, but not in those overexpressing PKC-beta I or PKC-gamma. Treatment of PKC-alpha transfected cells with PMA caused a rapid, albeit transient, increase in PDE1 activity, which reached a maximum some 1 h after PMA challenge, before returning to resting levels some 2 h later. The residual isobutylmethylxanthine (IBMX)-insensitive PDE activity was dramatically reduced (approx. 4-fold) in the PKC-gamma transfectants, suggesting that the activity of the cyclic AMP-specific IBMX-insensitive PDE7 activity was selectively reduced by overexpression of this particular PKC isoform. These data identify a novel point of ‘cross-talk’ between the lipid and cyclic AMP signalling systems where the action of specific PKC isoforms is shown to cause the induction of Ca2+/CaM-stimulated PDE (PDE1) activity. It is suggested that this protein kinase C-mediated process might involve regulation of PDE1 gene expression by the AP-1 (fos/jun) system.


Sign in / Sign up

Export Citation Format

Share Document