Beta-receptors and adenylate cyclase: comparison of nonischemic, ischemic, and postmortem tissue

1990 ◽  
Vol 258 (1) ◽  
pp. H140-H144 ◽  
Author(s):  
D. E. Vatner ◽  
M. A. Young ◽  
D. R. Knight ◽  
S. F. Vatner

We compared the effects of myocardial ischemia and postmortem changes on beta-adrenergic receptors and their coupling to adenylate cyclase activity. The effects of 1 h of left circumflex coronary artery occlusion were examined in eight conscious calves, which were then anesthetized with pentobarbital sodium, and the left ventricle was divided into nonischemic and ischemic regions. A crude membrane fraction was prepared from each region and from the nonischemic tissue 1 h postmortem. beta-Adrenergic receptor density increased (152 +/- 55%) and decreases in basal (-21 +/- 6.1%), isoproterenol-stimulated (-25 +/- 8.0%), 5'-guanylylimidodiphosphate [Gpp(NH)p]-stimulated (-17 +/- 5.8%), fluoride-stimulated (-26 +/- 5.8%), and forskolin-stimulated (-31 +/- 8.4%) adenylate cyclase activities were observed in the ischemic myocardium compared with nonischemic myocardium. Similarly, in postmortem samples, beta-adrenergic receptor density rose 58 +/- 16%, whereas decreases in basal (-48 +/- 8.7%), isoproterenol-stimulated (-61 +/- 7.8%), Gpp(NH)p-stimulated (-58 +/- 7.0%), fluoride-stimulated (-64 +/- 6.1%), and forskolin-stimulated (-52 +/- 6.2%) adenylate cyclase activities were observed. Agonist-binding competition curves with isoproterenol were shifted, indicating that beta-adrenergic receptors were binding agonists with low affinity in both the ischemic and postmortem myocardium. The marked, but directionally opposite, changes in receptor density and adenylate cyclase that occur postmortem indicate the importance of prompt processing of tissues. The striking similarity in response of beta-adrenergic receptor agonist and antagonist binding and adenylate cyclase activity in ischemic and postmortem tissue raises the speculation that similar mechanisms may operate under both conditions.

1981 ◽  
Vol 240 (4) ◽  
pp. E351-E357 ◽  
Author(s):  
J. A. Whitsett ◽  
M. A. Manton ◽  
C. Darovec-Beckerman ◽  
K. G. Adams ◽  
J. J. Moore

beta-Adrenergic receptors and catecholamine-sensitive adenylate cyclase were identified and partially characterized in membrane fractions of rabbit lungs from day 25 of gestation to adulthood with the beta-adrenergic antagonists (--)-[3H]dihydroalprenolol [(--)-[3H]DHA] and (--)-[125I]iodohydroxybenzylpindolol [(--)-[125I]HYP]. beta-Adrenergic receptor number (Bmax) increased 11.5-fold during this time period, increasing progressively during the latter days of gestation and the early neonatal period, from 37 +/- 10 fmol/mg protein at 25 days gestation to 425 +/- 51 fmol/mg in the adult rabbit lung (mean +/- SD). Receptor affinity for (--)-[3H]DHA (KD = 1.8 nM) or (--)-[125I]HYP (KD - 0.104 nM) and the proportion of beta 1- and beta 2-adrenergic receptor subtypes (60% beta 1 and 40% beta 2) did not change with advancing age. Basal adenylate cyclase activity in lung homogenates decreased significantly with increasing age, whereas the activity in the presence of catecholamine or NaF remained nearly constant. Catecholamines stimulated adenylate cyclase activity at all ages studied supporting a role of the maturation of beta-adrenergic receptors in the regulation of pulmonary function.


1987 ◽  
Vol 253 (6) ◽  
pp. E629-E635
Author(s):  
P. J. Scarpace ◽  
L. A. Baresi ◽  
J. E. Morley

Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the beta-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the beta-adrenergic pathway, adenylate cyclase activity and beta-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. beta-Adrenergic receptors were identified in BAT using [125I]iodocyanopindolol. Binding sites had the characteristics of mixed beta 1- and beta 2-type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in beta-adrenergic receptor density due to a loss of the beta 1-adrenergic subtype. This BAT beta-adrenergic receptor downregulation was tissue specific, since myocardial beta-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. In contrast, food deprivation did not alter BAT beta-adrenergic receptor density. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. The ratio of isoproterenol-stimulated to forskolin-stimulated adenylate cyclase activity decreased in the sucrose-fed and cold-exposed rats but not in the food-deprived rats. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of beta-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability.


1988 ◽  
Vol 255 (2) ◽  
pp. E153-E158 ◽  
Author(s):  
P. J. Scarpace ◽  
L. A. Baresi ◽  
J. E. Morley

Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the beta-adrenergic receptor. Glucocorticoids potentiate the action of catecholamines in some tissues by increasing the expression of beta-adrenergic receptors. Paradoxically, glucocorticoids suppress and adrenalectomy enhances BAT thermogenesis. To further study the reasons for this discrepancy, we assessed the effects of methylprednisolone administration, adrenalectomy, and adrenalectomy with corticosterone replacement on adenylate cyclase activity in BAT and on beta-adrenergic receptor density in lungs and BAT of rats. In lungs, the density of the beta 2-adrenergic receptor subtype increases after methylprednisolone administration and decreases after adrenalectomy. There was no change in BAT receptor density, but isoproterenol-, NaF-, and forskolin-stimulated adenylate cyclase activity was reduced by 20–35% after methylprednisolone treatment. There was a two- to threefold increase in adenylate cyclase activity after adrenalectomy, which was reversed by corticosterone administration. These data suggest that one mechanism by which glucocorticoids regulate BAT thermogenesis is by modulating the beta-adrenergic pathway at the level of adenylate cyclase activation.


1993 ◽  
Vol 264 (1) ◽  
pp. H196-H204 ◽  
Author(s):  
D. E. Vatner ◽  
K. Kiuchi ◽  
W. T. Manders ◽  
S. F. Vatner

The effects of 1 h of coronary arterial occlusion (CAO) followed by 15 min reperfusion (CAR) were examined in nine conscious dogs. Ischemia was verified by decreased regional blood flow (radioactive microspheres) and loss of systolic regional wall motion in the ischemic zone. beta-Adrenergic receptor density assessed by 125I-labeled cyanopindolol binding in a crude membrane fraction tended to decrease but was not significantly different. However, adenylyl cyclase activity and the guanine nucleotide stimulatory protein (Gs) were reduced in ischemic subendocardium compared with nonischemic subendocardium. The fraction of beta-adrenergic receptors binding agonist with high affinity increased in ischemic subendocardial and subepicardial layers. Compared with prior data in experiments with 1 h CAO without CAR, the increase in beta-adrenergic receptor density that occurs with myocardial ischemia is rapidly reversed with CAR of 15 min duration, while the decreased fraction of receptors binding agonist with high affinity was reversed to an increase in high-affinity receptors. The global decreases in adenylyl cyclase and Gs, which have been observed with simple CAO, persist but are observed selectively in the previously ischemic subendocardium after CAR. Thus both CAO and CAR affect beta-adrenergic receptors and adenylyl cyclase differently. During CAR, increased numbers of beta-adrenergic receptors binding agonist with high affinity occur potentially as a compensatory mechanism in the face of persistent reductions in adenylyl cyclase activity and Gs.


1991 ◽  
Vol 71 (6) ◽  
pp. 2094-2098 ◽  
Author(s):  
S. L. Mader ◽  
C. L. Downing ◽  
E. Van Lunteren

Previous reports suggest that hypoxia downregulates cardiac beta-adrenergic receptors from young rats. Because aging alters response to stress, we hypothesized an age-related alteration in the response to hypoxia. Male Fischer-344 rats, aged 3 and 20 mo, were divided into control and hypoxic groups. The hypoxic rats were exposed to hypobaric hypoxia (0.5 atm) for 3 wk. After hypoxic exposure, body weight decreased, hematocrit increased, right ventricular weight increased, and left ventricular weight decreased in all animals. beta-Adrenergic receptor density declined after hypoxic exposure in the young but not in the older animals, a change that was confined to the left ventricle. beta-Adrenergic receptor density in the right ventricle was significantly lower in the older animals than in the young animals. Plasma catecholamines (norepinephrine, epinephrine) drawn after the animals were killed (stress levels) decreased in young rats and increased in old rats after the exposure to hypoxia. Hypoxia is a useful physiological stress that elucidates age-related changes in cardiac beta-adrenergic receptor and catecholamine regulation that have not previously been described.


1983 ◽  
Vol 210 (2) ◽  
pp. 559-566 ◽  
Author(s):  
M S Setchenska ◽  
H R V Arnstein

After fractionation of rabbit bone marrow into dividing (early) and non-dividing (late) erythroid cells, the adenylate cyclase activity of membrane ghosts was assayed in the presence of guanine nucleotides ((GTP and its analogue p[NH]ppG (guanosine 5′-[beta, gamma-imido]triphosphate))), the beta-adrenergic agonist L-isoprenaline (L-isoproterenol) and the antagonist L-propranolol. Both GTP and p[NH]ppG increased the adenylate cyclase activity of early and late erythroblasts, whereas the stimulating effect of the beta-adrenergic drug L-isoprenaline was limited to the immature dividing bone-marrow cells. The effect of L-isoprenaline was completely inhibited by the antagonist L-propranolol, confirming that the response was due to stimulation of beta-adrenergic receptors on the plasma membrane. The lack of response of non-dividing erythroblasts to beta-adrenergic stimuli is not due to loss of beta-receptors, since both dividing and non-dividing cells bind the selective ligand [125I]iodohydroxybenzylpindolol with almost equal affinities, the apparent dissociation constants, Kd, being 0.91 × 10(-8)M and 1.0 × 10(-8) M respectively. The number of beta-adrenergic receptors per cell was 2-fold higher in the dividing cells. No significant change in binding affinity for GTP and p[NH]ppG during erythroblast development was observed: the dissociation constants of both guanine nucleotides were almost identical with early and late erythroblast membrane preparations [2-3 (X 10(-7) M]. With dividing cells, however, in the presence of L-isoprenaline the dissociation constants of GTP and p[NH]ppG were lower (6 × 10(-8) M). The dose-response curves for isoprenaline competition in binding of [125I]iodohydroxybenzylpindolol by dividing cells showed that the EC50 (effective concentration for half maximum activity) value for isoprenaline was higher in the presence of p[NH]ppG. With non-dividing cells the EC50 value for isoprenaline was equal in the presence and in the absence of p[NH]ppG and similar to that observed with dividing-cell membranes in the presence of the nucleotide. Thus differentiation of rabbit bone-marrow erythroid cells seems to be accompanied by uncoupling of the beta-adrenergic receptors from the adenylate cyclase catalytic protein as well as by a decrease in the number of receptors per cell, but not by changes in the catecholamine and guanine-nucleotide-binding affinities.


1989 ◽  
Vol 257 (4) ◽  
pp. H1088-H1095 ◽  
Author(s):  
F. D. Romano ◽  
S. G. MacDonald ◽  
J. G. Dobson

The effects of adenosine analogues on beta-adrenergic receptor and receptor-independent elicited increases in adenylate cyclase activity were investigated using membranes obtained from primary cultures of adult rat ventricular myocytes. Phenylisopropyladenosine, an A1-receptor agonist, at concentrations of 0.1, 1.0, and 10 microM, maximally inhibited isoproterenol-stimulated adenylate cyclase activity by 35, 55, and 41%, respectively. The inhibition by phenylisopropyladenosine was antagonized by 10 microM theophylline. One micromolar phenylisopropyladenosine was much less effective at attenuating forskolin-stimulated activity, such that the maximum inhibition was 26%. Phenylisopropyladenosine had no effect on adenylate cyclase stimulation by 5'-guanylylimidodiphosphate. Phenylaminoadenosine, an A2 agonist, at 10 microM or greater stimulated adenylate cyclase activity. This effect was not significantly inhibited by theophylline or 0.1 microM 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), which antagonized phenylisopropyladenosine inhibition of isoproterenol-stimulated adenylate cyclase activity. Additionally, N-ethylcarboxamidoadenosine, a nonselective adenosine-receptor agonist, had no effect on adenylate cyclase activity in the absence of DPCPX but stimulated adenylate cyclase activity in the presence of DPCPX. These results indicate that both A1 and A2 receptors exist on the ventricular myocyte sarcolemma. More importantly, the findings suggest that adenosine inhibition of catecholamine-stimulated adenylate cyclase activity is primarily due to an alteration in beta-adrenergic receptor-mediated transduction and perhaps in part by a direct inhibition of the catalytic component.


1981 ◽  
Vol 90 (1) ◽  
pp. 169-175 ◽  
Author(s):  
R F Howard ◽  
J R Sheppard

The adenylate cyclase of C6 glioma cell cultures was characterized for sensitivity to the beta-adrenergic agonist isoproterenol, as well as fluoride, and GTP as a function of the cell cycle. The mitotic phase of the cell cycle was emphasized because both the basal cellular cyclic AMP level and the intact C6 cell's capacity to accumulate cyclic AMP in response to isoproterenol decreased during mitosis. Basal and stimulated adenylate cyclase activities in mitotic cells were decreased relative to the enzyme activities in the G1, S, and G2 phases of the cell cycle. Analysis of the beta-adrenergic receptor using the radioligand(-)[3H]dihydroalprenolol showed that neither ligand affinity nor receptor density changed during the cell cycle, indicating that the reduced adenylate cyclase activity of the mitotic C6 cell was not caused by alterations in this hormone receptor. The reduction in the mitotic cell's basal adenylate cyclase activity was more prominent than the decrease in isoproterenol-, fluoride, or GTP-stimulated activities suggesting that the effectiveness of these enzymes activators (i.e., the efficiency of the coupling mechanism) was not attenuated during mitosis. These studies indicate that the intrinsic catalytic capacity (not the beta-adrenergic receptor or the coupling mechanism) of the C6 adenylate cyclase complex is reduced during mitosis and contributes to the mitotic cell's inability to accumulate and maintain the cyclic AMP concentration at the interphase level.


Sign in / Sign up

Export Citation Format

Share Document