adenylyl cyclase activity
Recently Published Documents


TOTAL DOCUMENTS

392
(FIVE YEARS 6)

H-INDEX

38
(FIVE YEARS 1)

2021 ◽  
Vol 87 ◽  
pp. 110124
Author(s):  
Vendula Markova ◽  
Lucie Hejnova ◽  
Ales Benda ◽  
Jiri Novotny ◽  
Barbora Melkes

Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 401
Author(s):  
Katherine M. Gerber ◽  
Nicholas B. Whitticar ◽  
Daniel R. Rochester ◽  
Kathryn L. Corbin ◽  
William J. Koch ◽  
...  

Insulin secretion is widely thought to be maximally stimulated in glucose concentrations of 16.7-to-30 mM (300-to-540 mg/dL). However, insulin secretion is seldom tested in hyperglycemia exceeding these levels despite the Guinness World Record being 147.6 mM (2656 mg/dL). We investigated how islets respond to 1-h exposure to glucose approaching this record. Insulin secretion from human islets at 12 mM glucose intervals dose-dependently increased until at least 72 mM glucose. Murine islets in 84 mM glucose secreted nearly double the insulin as in 24 mM (p < 0.001). Intracellular calcium was maximally stimulated in 24 mM glucose despite a further doubling of insulin secretion in higher glucose, implying that insulin secretion above 24 mM occurs through amplifying pathway(s). Increased osmolarity of 425-mOsm had no effect on insulin secretion (1-h exposure) or viability (48-h exposure) in murine islets. Murine islets in 24 mM glucose treated with a glucokinase activator secreted as much insulin as islets in 84 mM glucose, indicating that glycolytic capacity exists above 24 mM. Using an incretin mimetic and an adenylyl cyclase activator in 24 mM glucose enhanced insulin secretion above that observed in 84 mM glucose while adenylyl cyclase inhibitor reduced stimulatory effects. These results highlight the underestimated ability of islets to secrete insulin proportionally to extreme hyperglycemia through adenylyl cyclase activity.


2020 ◽  
Author(s):  
Yi Wang ◽  
Adelaide Bernard ◽  
Fanny Comblain ◽  
Xinyu Yue ◽  
Christophe Paillart ◽  
...  

AbstractThe Melanocortin-4 Receptor (MC4R) plays a critical role in the long-term regulation of energy homeostasis and mutations in MC4R are the most common cause of monogenic obesity. However, the precise molecular and cellular mechanisms underlying the maintenance of energy balance within MC4R expressing neurons are unknown. We recently reported that MC4R localizes to primary cilia, a cellular organelle that allows for partitioning of incoming cellular signals, raising the question of whether MC4R functions there. Here, using mouse genetic approaches, we found that cilia are required specifically on MC4R-expressing neurons to restrain feeding behavior. Moreover, these cilia were critical for pharmacological activators of MC4R to exert an anorexigenic effect. MC4R is expressed in multiple brain regions. Using targeted deletion of primary cilia, we found that cilia in the paraventricular nucleus (PVN) of the hypothalamus are essential to restrict food intake. MC4R activation increases adenylyl cyclase activity. Like removing cilia, inhibiting adenylyl cyclase activity in the cilia of MC4R-expressing neurons of the PVN caused hyperphagia and obesity. Thus, MC4R signals via cilia of PVN neurons to control food intake and body weight. We propose that defects in ciliary localization of MC4R cause obesity in human inherited obesity syndromes and ciliopathies.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1468 ◽  
Author(s):  
Trevor B. Doyle ◽  
Brian S. Muntean ◽  
Karin F. Ejendal ◽  
Michael P. Hayes ◽  
Monica Soto-Velasquez ◽  
...  

Adenylyl cyclase type 5 (AC5), as the principal isoform expressed in striatal medium spiny neurons (MSNs), is essential for the integration of both stimulatory and inhibitory midbrain signals that initiate from dopaminergic G protein-coupled receptor (GPCR) activation. The spatial and temporal control of cAMP signaling is dependent upon the composition of local regulatory protein networks. However, there is little understanding of how adenylyl cyclase protein interaction networks adapt to the multifarious pressures of integrating acute versus chronic and inhibitory vs. stimulatory receptor signaling in striatal MSNs. Here, we presented the development of a novel bimolecular fluorescence complementation (BiFC)-based protein-protein interaction screening methodology to further identify and characterize elements important for homeostatic control of dopamine-modulated AC5 signaling in a neuronal model cell line and striatal MSNs. We identified two novel AC5 modulators: the protein phosphatase 2A (PP2A) catalytic subunit (PPP2CB) and the intracellular trafficking associated protein—NSF (N-ethylmaleimide-sensitive factor) attachment protein alpha (NAPA). The effects of genetic knockdown (KD) of each gene were evaluated in several cellular models, including D1- and D2-dopamine receptor-expressing MSNs from CAMPER mice. The knockdown of PPP2CB was associated with a reduction in acute and sensitized adenylyl cyclase activity, implicating PP2A is an important and persistent regulator of adenylyl cyclase activity. In contrast, the effects of NAPA knockdown were more nuanced and appeared to involve an activity-dependent protein interaction network. Taken together, these data represent a novel screening method and workflow for the identification and validation of adenylyl cyclase protein-protein interaction networks under diverse cAMP signaling paradigms.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Carmen W. Dessauer ◽  
Rennolds Ostrom ◽  
Roland Seifert ◽  
Val J. Watts

Adenylyl cyclase, E.C. 4.6.1.1, converts ATP to cyclic AMP and pyrophosphate. Mammalian membrane-delimited adenylyl cyclases (nomenclature as approved by the NC-IUPHAR Subcommittee on Adenylyl cyclases [9]) are typically made up of two clusters of six TM domains separating two intracellular, overlapping catalytic domains that are the target for the nonselective activators Gαs (the stimulatory G protein α subunit) and forskolin (except AC9, [21]). adenosine and its derivatives (e.g. 2',5'-dideoxyadenosine), acting through the P-site,are inhibitors of adenylyl cyclase activity [27]. Four families of membranous adenylyl cyclase are distinguishable: calmodulin-stimulated (AC1, AC3 and AC8), Ca2+- and Gβγ-inhibitable (AC5, AC6 and AC9), Gβγ-stimulated and Ca2+-insensitive (AC2, AC4 and AC7), and forskolin-insensitive (AC9) forms. A soluble adenylyl cyclase (AC10) lacks membrane spanning regions and is insensitive to G proteins.It functions as a cytoplasmic bicarbonate (pH-insensitive) sensor [5].


2018 ◽  
Vol 483 (1) ◽  
pp. 379-381 ◽  
Author(s):  
N. V. Filinova ◽  
L. A. Lomovatskaya ◽  
A. S. Romanenko ◽  
R. K. Salyaev

2018 ◽  
Vol 23 (9) ◽  
pp. 898-906 ◽  
Author(s):  
Paul Tewson ◽  
Scott Martinka ◽  
Nathan Shaner ◽  
Catherine Berlot ◽  
Anne Marie Quinn ◽  
...  

Cell-based assays to detect Gαi signaling are often indirect, frequently involve complex pharmacological interventions, and are usually blind to the kinetics of the signaling. Our goal was to develop a simple, direct measure of Gαi signaling in living cells. We previously reported our fluorescent cADDis assay and showed that it reliably detects Gαs-mediated increases in cAMP levels. Agonists that stimulate a Gs-coupled receptor produce changes in the intensity of bright green or red fluorescent protein sensors that can be followed over time using automated fluorescence plate readers or fluorescence imaging systems. Since the cADDis sensors can monitor Gαs-mediated increases in adenylyl cyclase activity, in theory they should also be capable of detecting Gαi-mediated decreases. Here we apply our green fluorescent cADDis sensor to the detection of Gαi-mediated inhibition of adenylyl cyclase activity. We validated and optimized the assay in living HEK 293T cells using several known Gαi-coupled receptors and agonists, and we report robust Z′ statistics and consistent EC50 responses.


2017 ◽  
Vol 95 (9) ◽  
pp. 999-1008 ◽  
Author(s):  
André Luiz de Moura ◽  
Stephen Hyslop ◽  
Dora M. Grassi-Kassisse ◽  
Regina C. Spadari

Altered sensitivity to the chronotropic effect of catecholamines and a reduction in the β1/β2-adrenoceptor ratio have previously been reported in right atria of stressed rats, human failing heart, and aging. In this report, we investigated whether left atrial inotropism was affected by foot-shock stress. Male rats were submitted to 3 foot-shock sessions and the left atrial inotropic response, adenylyl cyclase activity, and β-adrenoceptor expression were investigated. Left atria of stressed rats were supersensitive to isoprenaline when compared with control rats and this effect was abolished by ICI118,551, a selective β2-receptor antagonist. Schild plot slopes for the antagonism between CGP20712A (a selective β1-receptor antagonist) and isoprenaline differed from unity in atria of stressed but not control rats. Atrial sensitivity to norepinephrine, as well as basal and forskolin- or isoprenaline-stimulated adenylyl cyclase activities were not altered by stress. The effect of isoprenaline on adenylyl cyclase stimulation was partially blocked by ICI118,551 in atrial membranes of stressed rats. These findings indicate that foot-shock stress equally affects inotropism and chronotropism and that β2-adrenoceptor upregulation contributes to the enhanced inotropic response to isoprenaline.


Sign in / Sign up

Export Citation Format

Share Document