L-NNA decreases cortical hyperemia and brain cGMP levels following CO2 inhalation in Sprague-Dawley rats

1994 ◽  
Vol 267 (2) ◽  
pp. H837-H843 ◽  
Author(s):  
K. Irikura ◽  
K. I. Maynard ◽  
W. S. Lee ◽  
M. A. Moskowitz

The role of nitric oxide (NO) in the response to 5% CO2 inhalation was investigated by measuring 1) regional cerebral blood flow (rCBF) by laser-Doppler flowmetry and pial vessel diameter through a closed cranial window after topical NG-nitro-L-arginine (L-NNA, 1 mM), and 2) the time-dependent changes in brain guanosine 3',5'-cyclic monophosphate (cGMP) levels after L-NNA (10 mg/kg ip). When L-NNA (but not NG-nitro-D-arginine) was applied topically for 30 or 60 min, the response to hypercapnia was significantly attenuated. A correlation was found between inhibition of brain NO synthase (NOS) activity and the rCBF response (r = 0.77; P < 0.01). However, L-NNA applied 15 min before hypercapnia did not attenuate the increase in rCBF but did attenuate the dilation to topical acetylcholine. Inhalation of CO2 (5%) elevated brain cGMP levels by 20–25%, and L-NNA reduced this response. These data from the rat suggest that 1) a product of NOS activity is associated with hypercapnic hyperemia and the attendant increase in brain cGMP levels, and 2) hypercapnic blood flow changes may not be dependent on endothelial NOS activity within pial vessels.

2000 ◽  
Vol 279 (3) ◽  
pp. H1291-H1298 ◽  
Author(s):  
Istvan Schiszler ◽  
Minoru Tomita ◽  
Yasuo Fukuuchi ◽  
Norio Tanahashi ◽  
Koji Inoue

In pentobarbital-anesthetized male Sprague-Dawley rats, a small cranial window was trephined, and the cortex was transilluminated with a fine glass fiber inserted into the brain parenchyma. The light intensity at the surface area of 2 × 2 mm was recorded during intracarotid injection of 25 μl of carbon black (CB) solution. The region of interest (ROI) was divided into a 50 × 50 matrix, and the mean transit time of CB transport was calculated in each matrix element. We found rapid transits of CB along the microvasculature, with considerable heterogeneity in the avascular area, and heterogeneous efficiency in autoregulatory capacity in the ROI during hypotension. The method was validated by comparison with laser-Doppler flowmetry. The average mean difference was 0.03 ± 0.05%. Five percent CO2 inhalation increased the flow by 85%, but heterogeneously. We concluded that the technique is exclusively sensitive to indicator transits in a very small area on the brain surface with potential usefulness in detecting regional heterogeneity in blood flow.


2001 ◽  
Vol 280 (3) ◽  
pp. H1215-H1221 ◽  
Author(s):  
Kei Miyakoshi ◽  
Hitoshi Ishimoto ◽  
Osamu Nishimura ◽  
Shinji Tanigaki ◽  
Mamoru Tanaka ◽  
...  

We investigated leukocyte involvement in uterine hypoperfusion and intrauterine fetal growth retardation (IUGR) induced by ischemia-reperfusion (I/R) in Sprague-Dawley rats. On day 17 of gestation, leukocyte accumulation in the uterus and placenta subjected to 30 min of ischemia, followed by reperfusion, was assessed by measuring myeloperoxidase (MPO) activity. Uterine MPO activity was significantly higher after 1 h of reperfusion than it was before ischemia ( P < 0.05), without any increase in placental MPO activity. Immunohistochemical staining showed leukocyte accumulation in the uterus subjected to I/R. The effects of treatment with monoclonal antibodies against CD11a (WT1) and CD18 (WT3) at a dose of 0.8 mg/kg on uterine blood flow and IUGR were investigated. Laser-Doppler flowmetry demonstrated that uterine hypoperfusion at 2 h after ischemia (blood flow, −51.7 ± 1.2%; P < 0.01) was inhibited by WT1 and WT3 treatment. I/R-induced IUGR at full term ( P < 0.05 vs. nonischemic horn) was prevented by WT1 and WT3 treatment on day 17. These results indicate that leukocyte accumulation may play an important role in the pathogenesis of uterine hypoperfusion and IUGR induced by I/R in pregnant rats.


1991 ◽  
Vol 260 (4) ◽  
pp. E608-E612
Author(s):  
M. Michalkiewicz ◽  
J. M. Connors ◽  
L. J. Huffman ◽  
Z. Pietrzyk ◽  
G. A. Hedge

It has been shown that the compensatory growth of the thyroid gland and the compensatory increase in hormone secretion that occur after hemithyroidectomy are preceded by a dramatic increase in thyroid blood flow (BF). These alterations in the thyroid remnant may be due to the concomitant increase in plasma thyrotropin (TSH) concentrations. It has been suggested, however, that the compensatory thyroid growth may also involve a neural reflex. In this study we have investigated the role of TSH in mediating the compensatory alterations in thyroid BF and mass after subtotal thyroidectomy. Male Sprague-Dawley rats were anesthetized with ether for surgical or sham hemithyroidectomy. One-half of the hemithyroidectomized rats (HTX) received no further treatment; in the other one-half of the HTX rats (Clamp), plasma TSH levels were maintained at levels comparable with those in sham-operated animals by initiating constant thyroid hormone replacement beginning at the time of hemithyroidectomy. Plasma samples for TSH, 3,5,3'-triiodothyronine, and thyroxine radioimmunoassays were obtained 2, 7, 14, and 21 days after surgery. Thyroid BF was determined at 1, 2, and 3 wk after surgery by the reference sample version of the radioactive microsphere technique (141Ce, 15 microns diameter). Plasma TSH levels and thyroid lobe weight were significantly elevated in HTX rats but not in Clamp rats. Thyroid BF was markedly increased in HTX rats. Thyroid BF was also significantly increased in Clamp rats despite the suppression of the rise in plasma TSH concentration, but this increase was less than that in HTX rats. Neither hemithyroidectomy nor Clamp treatments had any effect on arterial blood pressure or BF to other tissues (e.g., kidney).(ABSTRACT TRUNCATED AT 250 WORDS)


2002 ◽  
Vol 97 (2) ◽  
pp. 488-496 ◽  
Author(s):  
Stephen C. Jones ◽  
Carol R. Radinsky ◽  
Anthony J. Furlan ◽  
Douglas Chyatte ◽  
Yinsheng Qu ◽  
...  

Background The maintenance of constant cerebral blood flow (CBF) as mean cerebral perfusion pressure (CPP) varies is commonly referred to as CBF-pressure autoregulation. The lower limit of autoregulation is the CPP at which the vasodilatory capacity is exhausted and flow falls with pressure. We evaluated variability in the magnitude of percent change in CBF during the hypotensive portion of the autoregulatory curve. We hypothesize that this variability, in normal animals, obeys a Gaussian distribution and characterizes a vasodilatory mechanism that is inherently different from that described by the lower limit. Methods Sixty-five male Sprague-Dawley rats were anesthetized with 0.5-1% halothane and 70% nitrous oxide in oxygen. Body temperature was maintained at 37 degrees C. Using a closed, superfused cranial window, CBF (as % of control) was determined using laser Doppler flowmetry (LDF) through the window with the intracranial pressure set at 10 mmHg. Animals with low vascular reactivity to inhaled carbon dioxide and superfused adenosine diphosphate (ADP) or acetylcholine were excluded. MABP was sequentially lowered by exsanguination to 100, 85, 70, 55, and 40 mmHg. Using the %CBF versus CPP plots for each curve (1) the lower limit of autoregulation was identified; (2) the pattern of autoregulation was classified as "peak" (a rise in LDF flow of at least 15% as arterial pressure was dropped), "classic" (plateau with a fall), or "none" (a fall in LDF flow of greater than 15%); (3) the area under the autoregulatory curve between CPPs of 30 and 90 mmHg was calculated; and (4) the magnitude of the %CBF response to hypotension was assessed by determining the %CBF at a CPP of 60 mmHg (%CBFCPP60). Results Of the 65 curves, 21 had the peak pattern, 33 the classic pattern, and 11 the none pattern. The %CBFCPP60 and autoregulatory area displayed Gaussian distributions, consistent with normal variability. Although %CBFCPP60, autoregulatory area, and pattern were significantly correlated (r or rho &gt; 0.84, P &lt; 0.001), the lower limit correlated weakly with autoregulatory area (r = 0.34, P = 0.012), and not at all with autoregulatory pattern or %CBFCPP60. Conclusions The %CBFCPP60 measures an aspect of the autoregulatory curve that is distinct from the lower limit. The peak autoregulatory pattern indicates that vessels are dilating more than is necessary to maintain a plateau in response to the pressure decrease, whereas the none pattern existed in spite of acceptable vascular responses to inhaled carbon dioxide and superfused ADP or ACh and the lack of surgical trauma. These results provide a different view of autoregulation during hypotension, are most likely dependent on the highly regional CBF method used, and could have implications concerning potential cerebral ischemia and hypotension during anesthesia.


1993 ◽  
Vol 13 (2) ◽  
pp. 214-220 ◽  
Author(s):  
Joseph R. Meno ◽  
Al C. Ngai ◽  
H. Richard Winn

We measured the changes in pial arteriolar diameter and CSF concentrations of adenosine, inosine, and hypoxanthine during hypoxia in the absence and presence of topically applied dipyridamole (10−6 M) and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA; 10−5 M). Closed cranial windows were implanted in halothane-anesthetized adult male Sprague–Dawley rats for the observation of the pial circulation and collection of CSF. The mean resting arteriolar diameter in mock CSF was 31.2 ± 5.9 μm. Topically applied dipyridamole and EHNA, in combination, caused a slight but significant ( p < 0.05) increase in resting arteriolar diameter (33.8 ± 4.3 μm). With mock CSF, moderate hypoxia caused a 22.1 ± 9.7% increase in pial vessel diameter. Topically applied dipyridamole and EHNA significantly ( p < 0.01) potentiated pial arteriolar vasodilation in response to hypoxia. Moreover, the potentiating effects of dipyridamole and EHNA during hypoxia were completely abolished by theophylline (0.20 μmol/g, i.p.; p < 0.05), an adenosine receptor antagonist. Resting concentrations of adenosine, inosine, and hypoxanthine in the subwindow CSF were 0.18 ± 0.09, 0.35 ± 0.21, and 0.62 ± 0.12 μ M, respectively. In the absence of dipyridamole and EHNA, these levels were not affected by sustained moderate hypoxia (Pao2 = 36 ± 6 mm Hg). However, in the presence of dipyridamole and EHNA, the concentration of adenosine in the CSF during hypoxia was significantly ( p < 0.05) increased. Our data indicate that dipyridamole and EHNA potentiate hypoxic vasodilation of pial arterioles while simultaneously increasing extracellular adenosine levels, thus supporting the hypothesis that adenosine is involved in the regulation of cerebral blood flow.


Cephalalgia ◽  
2010 ◽  
Vol 31 (2) ◽  
pp. 190-198 ◽  
Author(s):  
Rosaria Greco ◽  
Cristina Meazza ◽  
Antonina Stefania Mangione ◽  
Marta Allena ◽  
Monica Bolla ◽  
...  

Background: Clinical studies indicated that nitric oxide (NO) donors cause regional changes in cerebral blood flow (CBF), similar to those reported in spontaneous migraine. Systemic nitroglycerin (NTG), a NO donor, is a well-accepted experimental model of migraine. In this study we have examined the effects of NTG on the meningeal and cortical blood flow in rats. Methods: Regional blood flow was monitored in male Sprague-Dawley rats using laser Doppler flowmetry before and after NTG/saline injection over 150 minutes. The effect of pre-treatment with Nω-nitro-L-arginine ester (L-NAME) or 7-nitroindazole (7-NI) on NTG-induced changes on blood flow was also investigated. Results: In the dura NTG caused a biphasic response represented by an initial decrease in blood flow followed by a significant increase. At variance, in the cortex NTG caused only an increase in blood flow. Pre-treatment with either L-NAME or 7-NI prevented NTG-induced increase in blood flow in both districts, while only L-NAME also prevented NTG-induced decrease in dural blood flow. Conclusion: The present findings provide additional information on the timing of effects of NTG on blood flow at both the meningeal and cortical levels. These effects seem to be related to vasoregulatory mechanisms and/or metabolic activity in response to the synthesis of endogenous NO.


2006 ◽  
Vol 95 (6) ◽  
pp. 3553-3561 ◽  
Author(s):  
Sandra Valencia-de Ita ◽  
Nada B. Lawand ◽  
Qing Lin ◽  
Gilberto Castañeda-Hernandez ◽  
William D. Willis

Recent behavioral and electrophysiological studies have attributed an important role to dorsal root reflexes (DRRs) in the initiation and development of neurogenic inflammation produced by intradermal capsaicin (CAP). The DRRs can occur in peptidergic fibers, resulting in peripheral release of neuromediators that produce vasodilation, plasma extravasation and subsequently hyperalgesia and allodynia. In this study, we have evaluated the effect of spinal administration of bumetanide (a blocker of the Na+K+2Cl− cotransporter, NKCC) on DRR activity, changes in cutaneous blood flow (vasodilation), hindpaw edema, mechanical allodynia, and hyperalgesia induced by intradermal injection of 1% CAP in Sprague-Dawley rats. Vasodilation was monitored using laser Doppler flowmetry, neurogenic edema was evaluated by measurements of hindpaw volume, and secondary mechanical allodynia and hyperalesia were tested using von Frey filaments (10 and 200 mN) applied to the plantar surface of the paw. Changes in the blood flow were blocked significantly by intrathecal bumetanide at 10 and 100 μM in both pre- and posttreatment studies. Spinal bumetanide at 10 and 100 μM blocked neurogenic edema when it was administered before CAP injection, but only bumetanide at 100 μM administered after CAP injection reduced the paw edema significantly. Furthermore, the administration of bumetanide onto the spinal cord reduced the increment in DRR activity produced by CAP. Finally, both secondary mechanical allodynia and hyperalesia were reduced by bumetanide at 1, 10, and 100 μM. Taken together these results suggest that NKCC is involved in the increases in DRR activity, neurogenic inflammation and hyperalgesia and allodynia induced by intradermal CAP.


1995 ◽  
Vol 268 (2) ◽  
pp. H569-H575 ◽  
Author(s):  
S. C. Jones ◽  
J. L. Williams ◽  
M. Shea ◽  
K. A. Easley ◽  
D. Wei

Cycling of various cerebral metabolic substances, arterial vascular diameter, and flow has been noted by many workers at a frequency near 0.1 Hz. Suspicion that this phenomenon is dependent on the type of anesthesia led us to investigate the occurrence of cerebral blood flow (CBF) cycling with different anesthetics. Fifteen Sprague-Dawley rats were anesthetized with either pentobarbital (n = 5, 40–50 mg/kg), alpha-chloralose (n = 5, 60 mg/kg), or halothane (n = 5, 1–0.5%). Body temperature was maintained at 37 degrees C. Femoral arterial and venous catheters were placed, and a tracheotomy was performed, permitting artificial ventilation with 30% O2–70% N2. A closed cranial window was formed over a 3-mm diameter craniotomy. Mean arterial pressure (MABP), arterial partial pressures of CO2 and O2 (PaCO2 and PaO2), and pH were controlled and stabilized at normal values. CBF was determined using laser Doppler flowmetry. To induce cycling, MABP was transiently and repeatedly lowered by exsanguination. Fast Fourier analysis of selected 64-s flow recordings (n = 38) was performed. CBF cycling was observed, independent of the type of anesthesia, in all animals. In 36 epochs, cycling was induced when MABP was reduced to a mean pressure of 65 +/- 1.5 mmHg. The mean frequency and amplitude were 0.094 +/- 0.003 Hz and 6.6 +/- 0.5%, respectively. Cycling occurred without blood withdrawal in two epochs. With the use of the blood-withdrawal epochs (n = 36), all three anesthetics shared a common linear slope between amplitude and blood pressure (P < 0.02) and blood pressure change (P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 273 (3) ◽  
pp. H1342-H1346 ◽  
Author(s):  
K. Toyoda ◽  
K. Fujii ◽  
S. Ibayashi ◽  
T. Kitazono ◽  
T. Nagao ◽  
...  

The basilar artery and its branch arterioles dilate actively in response to a marked decrease in blood pressure and maintain cerebral blood flow (CBF) to the brain stem. We tested the hypothesis that ATP-sensitive potassium (KATP) channels play a role in the autoregulatory responses of the brain stem circulation in vivo. In anesthetized Sprague-Dawley rats, local CBF to the brain stem was determined with laser-Doppler flowmetry, and diameters of the basilar artery and branch arterioles were measured through a cranial window during stepwise hemorrhagic hypotension. During topical application of 10(-6) and 10(-5) mol/l of glibenclamide, a selective KATP-channel blocker, the lower limit of CBF autoregulation shifted upward to 60-75 from 30-45 mmHg in the vehicle group. Glibenclamide significantly impaired the dilator response of small arterioles (baseline diameter 45 +/- 2 microns) throughout hypotension (P < 0.03) but did not impair the dilatation of the basilar artery (247 +/- 3 microns) or large arterioles (99 +/- 4 microns). Thus KATP channels appear to play an important role in the regulation of CBF to the the brain stem during hypotension by mediating the compensatory dilatation of small arterioles. In contrast, these channels may not be a major regulator of the vascular tone of larger arteries during hypotension.


1996 ◽  
Vol 16 (4) ◽  
pp. 714-719 ◽  
Author(s):  
Roman L. Haberl ◽  
Pamla J. Decker-Hermann ◽  
Klaus Hermann

There is evidence of an intrinsic renin–angiotensin system in the brain. The goal of the study was to determine whether stimulation of endogenous angiotensin production by applying renin to the brain surface has an effect on pial arteriolar caliber and CBF. Pial vessel diameters were measured through a closed cranial window in anesthetized rabbits. Percent changes of blood flow in the cortical area under the cranial window were simultaneously measured by laser-Doppler flowmetry. Topical application of 0.01–0.1 U/ml renin induced maximum dilation of 18.9 ± 4% (mean ± SD) of pial arterioles within 2 min. Arteriolar calibers thereafter decreased slowly. Flow gradually increased to peak at 38 ± 15% 50 min after renin application. Angiotensin I levels in jugular blood, as measured by radioimmunoassay, increased to a peak 40 min after topical renin application. Angiotensin II levels in jugular blood and both angiotensin I and II levels in blood samples from the femoral artery did not change. Diameter and flow changes were inhibited by intravenous pretreatment with the converting enzyme blocker captopril (10 mg/kg body wt i.v.). Captopril did not affect the vasodilation and flow increase in response to hypercapnia. Topically applied Captopril (10−5 M) blocked renin-induced arteriolar dilation. We conclude that renin increases pial arteriolar diameters and cortical blood flow in the rabbit brain. Stimulation of angiotensin production is likely to be a mediator of this response.


Sign in / Sign up

Export Citation Format

Share Document