moderate hypoxia
Recently Published Documents


TOTAL DOCUMENTS

249
(FIVE YEARS 33)

H-INDEX

32
(FIVE YEARS 2)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 144
Author(s):  
Hun-Young Park ◽  
Jeong-Weon Kim ◽  
Sang-Seok Nam

We compared the effects of metabolic, cardiac, and hemorheological responses to submaximal exercise under light hypoxia (LH) and moderate hypoxia (MH) versus normoxia (N). Ten healthy men (aged 21.3 ± 1.0 years) completed 30 min submaximal exercise corresponding to 60% maximal oxygen uptake at normoxia on a cycle ergometer under normoxia (760 mmHg), light hypoxia (596 mmHg, simulated 2000 m altitude), and moderate hypoxia (526 mmHg, simulated 3000 m altitude) after a 30 min exposure in the respective environments on different days, in a random order. Metabolic parameters (oxygen saturation (SPO2), minute ventilation, oxygen uptake, carbon dioxide excretion, respiratory exchange ratio, and blood lactate), cardiac function (heart rate (HR), stroke volume, cardiac output, and ejection fraction), and hemorheological properties (erythrocyte deformability and aggregation) were measured at rest and 5, 10, 15, and 30 min after exercise. SPO2 significantly reduced as hypoxia became more severe (MH > LH > N), and blood lactate was significantly higher in the MH than in the LH and N groups. HR significantly increased in the MH and LH groups compared to the N group. There was no significant difference in hemorheological properties, including erythrocyte deformability and aggregation. Thus, submaximal exercise under light/moderate hypoxia induced greater metabolic and cardiac responses but did not affect hemorheological properties.


2021 ◽  
Vol 142 ◽  
pp. 112052
Author(s):  
Federica Brugnoli ◽  
Paola Tedeschi ◽  
Silvia Grassilli ◽  
Annalisa Maietti ◽  
Vincenzo Brandolini ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Fengying Zhang ◽  
Xijiang Wu ◽  
Wenping Duan ◽  
Fangfang Wang ◽  
Tingting Huang ◽  
...  

Objective. To explore the influencing factors of daytime sleepiness in patients with obstructive sleep apnea hypopnea syndrome (OSAHS) and the correlation between daytime sleepiness and pulse oxygen decline rate in patients with severe OSAHS. Methods. From January 2018 to April 2021, 246 consecutive patients with OSAHS diagnosed by polysomnography (PSG) in our hospital were selected. All patients were grouped according to the minimum nocturnal oxygen saturation and apnea hypopnea index (AHI). There were 33 cases in the no sleep hypoxia group, 34 cases in the mild hypoxia group, 119 cases in the moderate hypoxia group, and 60 cases in the severe hypoxia group. There were 30 cases in the simple snoring group, 55 cases in the mild OSAHS group, 48 cases in the moderate OSAHS group, and 113 cases in the severe OSAHS group. The Epworth Sleepiness Scale (ESS) scores of each group were compared. All patients were grouped according to ESS score. Those with score ≥9 were included in the lethargy group (n = 118), and those with score ≤10 were included in the no lethargy group (n = 128). Univariate and multivariate logistic regression analyses were used to explore the influencing factors of daytime sleepiness in OSAHS patients. Pearson correlation analysis showed the correlation between ESS score and pulse oxygen decline rate in patients with severe OSAHS. Results. The ESS score of the severe hypoxia group > the moderate hypoxia group > the mild hypoxia group > the no sleep hypoxia group. There was significant difference among the groups (F = 19.700, P < 0.0001 ). There were significant differences between the severe hypoxia group and other groups and between the moderate hypoxia group and the no sleep hypoxia group and the mild hypoxia group ( P < 0.05 ). The ESS score of the severe OSAHS group > the moderate OSAHS group > the mild OSAHS group > the simple snoring group. There was significant difference among the groups (F = 19.000, P < 0.0001 ). There were significant differences between the severe OSAHS group and other groups and between the moderate OSAHS group and the simple snoring group ( P < 0.05 ). Univariate analysis showed that BMI, neck circumference, snoring degree, total apnea hypopnea time, AHI, micro arousal index (MAI), oxygen saturation (CT90%), lowest oxygen saturation (LSaO2), and mean oxygen saturation (MSaO2) were the influencing factors of daytime sleepiness in OSAHS patients ( P < 0.05 ). Multiple logistic regression analysis showed that AHI and CT90% were independent risk factors for daytime sleepiness in OSAHS patients ( P < 0.05 ). Pearson correlation analysis showed that there was a positive correlation between ESS score and pulse oxygen decline rate in patients with severe OSAHS (r = 0.765, P < 0.0001 ). Conclusion. OSAHS patients may be accompanied by daytime sleepiness in varying degrees, which may be independently related to AHI and CT90%. The degree of daytime sleepiness in patients with severe OSAHS may be closely related to the decline rate of pulse oxygen, which should be paid great attention in clinic.


Author(s):  
Giovanni Landoni ◽  
Pasquale Nardelli ◽  
Alberto Zangrillo ◽  
Ludhmila A. Hajjar

Results from recent large randomized trials investigating the use of high PEEP in patients without ARDS all evidence that high levels may increase mortality due to hypotension and bradycardia. A careful assessment of cardiac function – with particular focus on the right ventricle – should be performed before planning our ventilation strategy in any setting, including COVID-19 and ARDS in general. Mechanical ventilation should be respectful in regards of heart function, and tolerant with moderate hypoxia and hypercapnia, noninvasive (as soon as possible) and synchronized.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anne Beemelmanns ◽  
Fábio S. Zanuzzo ◽  
Xi Xue ◽  
Rebeccah M. Sandrelli ◽  
Matthew L. Rise ◽  
...  

Abstract Background Increases in ocean temperatures and in the frequency and severity of hypoxic events are expected with climate change, and may become a challenge for cultured Atlantic salmon and negatively affect their growth, immunology and welfare. Thus, we examined how an incremental temperature increase alone (Warm & Normoxic-WN: 12 → 20 °C; 1 °C week− 1), and in combination with moderate hypoxia (Warm & Hypoxic-WH: ~ 70% air saturation), impacted the salmon’s hepatic transcriptome expr\ession compared to control fish (CT: 12 °C, normoxic) using 44 K microarrays and qPCR. Results Overall, we identified 2894 differentially expressed probes (DEPs, FDR < 5%), that included 1111 shared DEPs, while 789 and 994 DEPs were specific to WN and WH fish, respectively. Pathway analysis indicated that the cellular mechanisms affected by the two experimental conditions were quite similar, with up-regulated genes functionally associated with the heat shock response, ER-stress, apoptosis and immune defence, while genes connected with general metabolic processes, proteolysis and oxidation-reduction were largely suppressed. The qPCR assessment of 41 microarray-identified genes validated that the heat shock response (hsp90aa1, serpinh1), apoptosis (casp8, jund, jak2) and immune responses (apod, c1ql2, epx) were up-regulated in WN and WH fish, while oxidative stress and hypoxia sensitive genes were down-regulated (cirbp, cyp1a1, egln2, gstt1, hif1α, prdx6, rraga, ucp2). However, the additional challenge of hypoxia resulted in more pronounced effects on heat shock and immune-related processes, including a stronger influence on the expression of 14 immune-related genes. Finally, robust correlations between the transcription of 19 genes and several phenotypic traits in WH fish suggest that changes in gene expression were related to impaired physiological and growth performance. Conclusion Increasing temperature to 20 °C alone, and in combination with hypoxia, resulted in the differential expression of genes involved in similar pathways in Atlantic salmon. However, the expression responses of heat shock and immune-relevant genes in fish exposed to 20 °C and hypoxia were more affected, and strongly related to phenotypic characteristics (e.g., growth). This study provides valuable information on how these two environmental challenges affect the expression of stress-, metabolic- and immune-related genes and pathways, and identifies potential biomarker genes for improving our understanding of fish health and welfare.


Author(s):  
Hannes Gatterer ◽  
Verena Menz ◽  
Martin Burtscher

In severe hypoxia, single-leg peak oxygen uptake (VO2peak) is reduced mainly due to the inability to increase cardiac output (CO). Whether moderate altitude allows CO to increase during single-leg cycling, thereby restoring VO2peak, has not been extensively investigated. Five healthy subjects performed an incremental, maximal, two-legged cycle ergometer test, and on separate days a maximal incremental one-leg cycling test in normoxia and in moderate hypoxia (fraction of inspired oxygen (FiO2) = 15%). Oxygen uptake, heart rate, blood pressure responses, power output, and CO (PhysioFlow) were measured during all tests. Moderate hypoxia lowered single-leg peak power output (154 ± 31 vs. 128 ± 26 watts, p = 0.03) and oxygen uptake (VO2) (36.8 ± 6.6 vs. 33.9 ± 6.9 mL/min/kg, p = 0.04), despite higher peak CO (16.83 ± 3.10 vs. 18.96 ± 3.59 L/min, p = 0.04) and systemic oxygen (O2) delivery (3.37 ± 0.84 vs. 3.47 ± 0.89 L/min, p = 0.04) in hypoxia compared to normoxia. Arterial–venous O2 difference (a–vDO2) was lower in hypoxia (137 ± 21 vs. 112 ± 19 mL/l, p = 0.03). The increases in peak CO from normoxia to hypoxia were negatively correlated with changes in mean arterial pressure (MABP) (p < 0.05). These preliminary data indicate that the rise in CO was not sufficient to prevent single-leg performance loss at moderate altitude and that enhanced baroreceptor activity might limit CO increases in acute hypoxia, likely by reducing sympathetic activation. Since the systemic O2 delivery was enhanced and the calculated a–vDO2 reduced in moderate hypoxia, a potential diffusion limitation cannot be excluded.


2021 ◽  
Vol 7 ◽  
Author(s):  
Anne Beemelmanns ◽  
Laia Ribas ◽  
Dafni Anastasiadi ◽  
Javier Moraleda-Prados ◽  
Fábio S. Zanuzzo ◽  
...  

The marine environment is predicted to become warmer and more hypoxic, and these conditions may become a challenge for marine fish species. Phenotypically plastic responses facilitating acclimatization to changing environments can be mediated by DNA methylation through the modulation of gene expression. To investigate whether temperature and hypoxia exposure induce DNA methylation changes, we challenged post-smolt Atlantic salmon (Salmo salar) to increasing temperatures (12 → 20°C, 1°C week–1) under normoxia or moderate hypoxia (∼70% air saturation) and compared responses in the liver after 3 days or 4 weeks at 20°C. DNA methylation was studied in six genes related to temperature stress (cirbp, serpinh1), oxidative stress (prdx6, ucp2), apoptosis (jund), and metabolism (pdk3). Here, we report that exposure to high temperature, alone or combined with hypoxia, affected the methylation of CpG sites within different genomic regulatory elements around the transcription start of these temperature/hypoxia biomarker genes. Yet, we uncovered distinct CpG methylation profiles for each treatment group, indicating that each environmental condition may induce different epigenetic signatures. These CpG methylation responses were strongly dependent on the duration of stress exposure, and we found reversible, but also persistent, CpG methylation changes after 4 weeks of exposure to 20°C. Further, several of these changes in CpG methylation correlated with transcriptional changes, and thus, can be considered as regulatory epigenetic marks (epimarkers). Our study provides insights into the dynamic associations between CpG methylation and transcript expression in Atlantic salmon, and suggests that this epigenetic mechanism may mediate physiological acclimation to short-term and long-term environmental changes.


2021 ◽  
Vol 16 (1) ◽  
pp. 154-157
Author(s):  
Naoya Takei ◽  
Katsuyuki Kakinoki ◽  
Olivier Girard ◽  
Hideo Hatta

Background: Training in hypoxia versus normoxia often induces larger physiological adaptations, while this does not always translate into additional performance benefits. A possible explanation is a reduced oxygen flux, negatively affecting training intensity and/or volume (decreasing training stimulus). Repeated Wingates (RW) in normoxia is an efficient training strategy for improving both physiological parameters and exercise capacity. However, it remains unclear whether the addition of hypoxia has a detrimental effect on RW performance. Purpose: To test the hypothesis that acute moderate hypoxia exposure has no detrimental effect on RW, while both metabolic and perceptual responses would be slightly higher. Methods: On separate days, 7 male university sprinters performed 3 × 30-s Wingate efforts with 4.5-min passive recovery in either hypoxia (FiO2: 0.145) or normoxia (FiO2: 0.209). Arterial oxygen saturation was assessed before the first Wingate effort, while blood lactate concentration and ratings of perceived exertion were measured after each bout. Results: Mean (P = .92) and peak (P = .63) power outputs, total work (P = .98), and the percentage decrement score (P = .25) were similar between conditions. Arterial oxygen saturation was significantly lower in hypoxia versus normoxia (92.0% [2.8%] vs 98.1% [0.4%], P < .01), whereas blood lactate concentration (P = .78) and ratings of perceived exertion (P = .51) did not differ between conditions. Conclusion: In sprinters, acute exposure to moderate hypoxia had no detrimental effect on RW performance and associated metabolic and perceptual responses.


2020 ◽  
Author(s):  
Natalia Molchanova ◽  
Vitaly Rybakov ◽  
Eugene Kalinin ◽  
Anna Kamenshchikova

During a monofin freedive in pool an athlete goes into hypercapnia and hypoxia. This limits his or her performance. During breatholds the air stored in the lungs and airways is changing it’s composition. The changes are poorly studied, or not at all for advanced level freedivers. Some research was done on spearfishers, which is a poor approximation of freediving. We analyzed the end-tidal air of an advanced level freediver in pool training. Continuous freedives under 60% of personal bests, or interval series with each dive under 20-40% of personal best lead to moderate hypoxia and acute hypercapnia and are good for laying-the-bases training periods, increasing personal tolerance to CO2 (though this will not directly improve athletic performance). On the other hand, for pre-competitive training periods for experienced freedivers we recommend continuous one-time dives (with a safety buddy) at distances over 70% of personal best.


Sign in / Sign up

Export Citation Format

Share Document