Hypoxia-reoxygenation increases O2-. efflux which injures endothelial cells by an extracellular mechanism

1996 ◽  
Vol 270 (3) ◽  
pp. H945-H950 ◽  
Author(s):  
L. S. Terada

The mechanisms by which superoxide anion (O2-.) injures reoxygenated vascular cells are not clearly understood. We hypothesized that O2-. formed in an intracellular compartment during reoxygenation may egress through plasmalemmal anion channels and mediate injury from an extracellular site. Bovine pulmonary artery endothelial cells (EC) kept hypoxic for 48 h had increased release of preloaded 51Cr upon reoxygenation. Evidence for an extracellular site of injury was the following. First, decreasing extracellular O2-. levels (measured by cytochrome c reduction) with the anion channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) leads to decreased 51Cr leak. In contrast to its effect on extracellular O2-., DIDS increased intracellular O2-. levels (measured by nitroblue tetrazolium reduction) following reoxygenation. Second, treatment with exogenous superoxide dismutase (SOD), while having no significant effect on intracellular O2-. levels, also decreased 51Cr leak. Furthermore, cotreatment of EC with DIDS did not abrogate the protective effects of exogenous SOD, suggesting that SOD decreased injury by decreasing extracellular and not intracellular O2-. Finally, exposure of EC to extracellularly generated O2-. (xanthine oxidase/hypoxanthine system) caused injury, which was decreased by SOD but not by blockade of O2-. entry with DIDS. The mechanism by which O2-. injures EC may involve generation of .OH by surface-associated iron, since iron chelators and .OH scavengers of varying membrane permeability all decreased 51Cr release to a similar extent. Furthermore, the iron chelators and .OH scavengers also decreased EC 51Cr leak following exposure to exogenous xanthine oxidase/hypoxanthine but not following exposure to a O2(-.)-independent agent (A23187). We conclude that hypoxia-reoxygenation injures EC in a manner that is at least in part dependent on the efflux of O2-. into the extracellular space. Endogenous and exogenous strategies for protection against reoxygenation injury must target extracellular O2-. as a potentially harmful species.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ye Chen ◽  
Jiyue Wen ◽  
Zhiwu Chen

AbstractInhibition of RhoA-ROCK pathway is involved in the H2S-induced cerebral vasodilatation and H2S-mediated protection on endothelial cells against oxygen-glucose deprivation/reoxygenation injury. However, the inhibitory mechanism of H2S on RhoA-ROCK pathway is still unclear. The aim of this study was to investigate the target and mechanism of H2S in inhibition of RhoA/ROCK. GST-RhoAwild and GST-RhoAS188A proteins were constructed and expressed, and were used for phosphorylation assay in vitro. Recombinant RhoAwild-pEGFP-N1 and RhoAS188A-pEGFP-N1 plasmids were constructed and transfected into primary hippocampal nerve cells (HNCs) to evaluate the neuroprotective mechanism of endothelial H2S by using transwell co-culture system with endothelial cells from cystathionine-γ-lyase knockout (CSE−/−) mice and 3-mercaptopyruvate sulfurtransferase knockout (3-MST−/−) rats, respectively. We found that NaHS, exogenous H2S donor, promoted RhoA phosphorylation at Ser188 in the presence of cGMP-dependent protein kinase 1 (PKG1) in vitro. Besides, both exogenous and endothelial H2S facilitated the RhoA phosphorylation at Ser188 in HNCs, which induced the reduction of RhoA activity and membrane transposition, as well as ROCK2 activity and expression. To further investigate the role of endothelial H2S on RhoA phosphorylation, we detected H2S release from ECs of CSE+/+ and CSE−/− mice, and 3-MST+/+ and 3-MST−/− rats, respectively, and found that H2S produced by ECs in the culture medium is mainly catalyzed by CSE synthase. Moreover, we revealed that both endothelial H2S, mainly catalyzed by CSE, and exogenous H2S protected the HNCs against hypoxia-reoxygenation injury via phosphorylating RhoA at Ser188.


1998 ◽  
Vol 786 (1-2) ◽  
pp. 89-95 ◽  
Author(s):  
Joel W. Beetsch ◽  
T.S. Park ◽  
Laura L. Dugan ◽  
Aarti R. Shah ◽  
Jeffrey M. Gidday

2012 ◽  
Vol 178 (1) ◽  
pp. e35-e41 ◽  
Author(s):  
Neal R. Banga ◽  
K. Raj Prasad ◽  
J. Lance Burn ◽  
Shervanthi Homer-Vanniasinkam ◽  
Anne Graham

2006 ◽  
Vol 34 (1) ◽  
pp. 165-172 ◽  
Author(s):  
Julien Pottecher ◽  
Gaëlle Cheisson ◽  
Olivier Huet ◽  
Christian Laplace ◽  
Eric Vicaut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document