Endothelial nitric oxide synthase gene transfer enhances dilation of newborn piglet pulmonary arteries

1999 ◽  
Vol 277 (1) ◽  
pp. H371-H379
Author(s):  
Judy L. Aschner ◽  
Nora Kovacs ◽  
James V. Perciaccante ◽  
Jorge P. Figueroa ◽  
Nishadi Thrikawala ◽  
...  

We determined the expression and functional correlate of in vitro transfection with a recombinant adenoviral vector encoding the gene for bovine endothelial nitric oxide synthase (AdCMVeNOS) or Escherichia coliβ-galactosidase (AdCMVLacZ) in pulmonary endothelial cells (EC), vascular smooth muscle cells (VSMC), and pulmonary arteries (PA) from newborn piglets. AdCMVeNOS and AdCMVeLacZ vectors, grown in 293-cell monolayers, were purified by double-cesium gradient ultracentrifugation. Cell cultures and PA were incubated with increasing vector titers for 30 or 60 min, followed by incubation in fresh medium for 18 h at 37°C. LacZ expression was assessed by histochemical staining; eNOS expression was evaluated by Western blot analysis. Functional eNOS expression was determined by measurement of cGMP and quantification of the relaxation response to bradykinin (BK). In PA, LacZ transgene expression was preferentially localized to the adventitia and endothelium. Increased eNOS protein expression was observed in EC and VSMC transfected with AdCMVeNOS. Functional studies revealed increased cGMP abundance in cultured cells and enhanced relaxation to BK in AdCMVeNOS-transfected PA. These studies demonstrate that gene transfer with AdCMVeNOS results in functional expression and altered vasoactive responses in the neonatal pulmonary vasculature. Gene transfer with replication-deficient adenovirus vectors is a useful tool for the study of targeted genes in vascular biology.

Circulation ◽  
1997 ◽  
Vol 96 (7) ◽  
pp. 2254-2261 ◽  
Author(s):  
Iftikhar J. Kullo ◽  
Geza Mozes ◽  
Robert S. Schwartz ◽  
Peter Gloviczki ◽  
Thomas B. Crotty ◽  
...  

2008 ◽  
Vol 294 (3) ◽  
pp. L582-L591 ◽  
Author(s):  
Neetu Sud ◽  
Stephen Wedgwood ◽  
Stephen M. Black

In this study, we explore the roles of the delta isoform of PKC (PKCδ) in the regulation of endothelial nitric oxide synthase (eNOS) activity in pulmonary arterial endothelial cells isolated from fetal lambs (FPAECs). Pharmacological inhibition of PKCδ with either rottlerin or with the peptide, δV1-1, acutely attenuated NO production, and this was associated with a decrease in phosphorylation of eNOS at Ser1177 (S1177). The chronic effects of PKCδ inhibition using either rottlerin or the overexpression of a dominant negative PKCδ mutant included the downregulation of eNOS gene expression that was manifested by a decrease in both eNOS promoter activity and protein expression after 24 h of treatment. We also found that PKCδ inhibition blunted Akt activation as observed by a reduction in phosphorylated Akt at position Ser473. Thus, we conclude that PKCδ is actively involved in the activation of Akt. To determine the effect of Akt on eNOS signaling, we overexpressed a dominant negative mutant of Akt and determined its effect of NO generation, eNOS expression, and phosphorylation of eNOS at S1177. Our results demonstrated that Akt inhibition was associated with decreased NO production that correlated with reduced phosphorylation of eNOS at S1177, and decreased eNOS promoter activity. We next evaluated the effect of endogenously produced NO on eNOS expression by incubating FPAECs with the eNOS inhibitor 2-ethyl-2-thiopseudourea (ETU). ETU significantly inhibited NO production, eNOS promoter activity, and eNOS protein levels. Together, our data indicate involvement of PKCδ-mediated Akt activation and NO generation in maintaining eNOS expression.


2004 ◽  
Vol 287 (2) ◽  
pp. F231-F235 ◽  
Author(s):  
Marcela Herrera ◽  
Jeffrey L. Garvin

Endothelin-1 (ET-1) acutely inhibits NaCl reabsorption by the thick ascending limb (THAL) by activating the ETB receptor, stimulating endothelial nitric oxide synthase (eNOS), and releasing nitric oxide (NO). In nonrenal tissue, chronic exposure to ET-1 stimulates eNOS expression via the ETB receptor and activation of phosphatidylinositol 3-kinase (PI3K). We hypothesized that ET-1 increases eNOS expression in the THAL by binding to ETB receptors and stimulating PI3K. In primary cultures of medullary THALs treated for 24 h, eNOS expression increased by 36 ± 18% with 0.01 nM ET-1, 123 ± 30% with 0.1 nM ( P < 0.05; n = 5), and 71 ± 30% with 1 nM, whereas 10 nM had no effect. BQ-788, a selective ETB receptor antagonist, completely blocked stimulation of eNOS expression caused by 0.1 nM ET-1 (12 ± 25 vs. 120 ± 40% for ET-1 alone; P < 0.05; n = 5). BQ-123, a selective ETA receptor antagonist, did not affect the increase in eNOS caused by 0.1 nM ET-1. Sarafotoxin c (S6c; 0.1 μM), a selective ETB receptor agonist, increased eNOS expression by 77 ± 30% ( P < 0.05; n = 6). Wortmannin (0.01 μM), a PI3K inhibitor, completely blocked the stimulatory effect of 0.1 μM S6c (77 ± 30 vs. −28 ± 9%; P < 0.05; n = 6). To test whether the increase in eNOS expression heightens activity, we measured NO release in response to simultaneous treatment with l-arginine, ionomycin, and clonidine using a NO-sensitive electrode. NO release by control cells was 337 ± 61 and 690 ± 126 pA in ET-1-treated cells ( P < 0.05; n = 5). Taken together, these data suggest that ET-1 stimulates THAL eNOS, activating ETB receptors and PI3K and thereby increasing NO production.


Circulation ◽  
1999 ◽  
Vol 100 (suppl_2) ◽  
Author(s):  
David G. Cable ◽  
Vincent J. Pompili ◽  
Timothy O’Brien ◽  
Hartzell V. Schaff

Background —Coronary arteries respond to hypoxia with transient relaxations, which increases coronary blood flow, in part, by release of nitric oxide. We hypothesized that increased expression of nitric oxide synthase might further augment blood vessel relaxation during hypoxia. The present study examined the effect of adenovirus-mediated transfer of bovine endothelial nitric oxide synthase (eNOS) on hypoxia-induced transient relaxations in canine coronary arteries. Methods and Results —Paired segments of coronary arteries were exposed to vehicle (phosphate-buffered saline with albumin) or an adenovirus encoding either E coli β-galactosidase (Ad.CMVLacZ, viral control; 10 10 pfu/mL) or eNOS (Ad.CMVeNOS; 10 10 pfu/mL) for 2 hours at 37°C. Immunohistochemistry with a monoclonal antibody specific for eNOS documented both endothelial and adventitial expression in Ad.CMVeNOS arteries, whereas vehicle and viral controls demonstrated only constitutive expression. Levels of cGMP were increased 5-fold in Ad.CMVeNOS arteries compared with controls. In arteries exposed to Ad.CMVeNOS, maximum contraction to prostaglandin F 2α was reduced compared with viral controls, and this effect was eliminated by pretreatment with a competitive inhibitor of eNOS ( N G -monomethyl- l -arginine, 10 −3 mol/L). Hypoxia-induced transient relaxation (95% N 2 -5% CO 2 ) in Ad.CMVeNOS arteries (45.2±8.8%, n=6) was augmented compared with vehicle (26.3±6.0%) or viral (27.2±7.1%) controls. Conclusions —Adenovirus-mediated gene transfer of nitric oxide synthase reduces receptor-dependent contractions and augments hypoxia-induced relaxations in canine coronary arteries; this method of augmentation of NO production might be advantageous for reduction of coronary artery vasospasm.


2001 ◽  
Vol 280 (5) ◽  
pp. R1269-R1275 ◽  
Author(s):  
Michael J. Solhaug ◽  
Usa Kullaprawithaya ◽  
Xui Q. Dong ◽  
Ke-Wen Dong

The postnatal pattern of renal endothelial nitric oxide synthase (eNOS) is unknown. The purpose of this study was to characterize eNOS expression during maturation and compare this to neuronal NOS (nNOS). The experiments measured whole kidney eNOS mRNA expression by RT-PCR and protein content by Western blot, as well as cortical and medullary protein content in piglets at selected postnatal ages and in adult pigs. Whole kidney eNOS mRNA was compared with nNOS. Whole kidney eNOS expression decreased from the newborn to its lowest at 7 days, returning by 14 days to adult levels. This eNOS mRNA pattern contrasted with nNOS, which was highest at birth, and progressively decreased to its lowest level in the adult. At birth, cortical eNOS protein was greater than medullary, contrasting with the adult pattern of equivalent levels. In conclusion eNOS is developmentally regulated during early renal maturation and may critically participate in renal function during this period. The eNOS developmental pattern differs from nNOS, suggesting that these isoforms may have different regulatory factors and functional contributions in the postnatal kidney.


Circulation ◽  
2002 ◽  
Vol 105 (9) ◽  
pp. 1104-1109 ◽  
Author(s):  
Claudius Teupe ◽  
Sergio Richter ◽  
Beate Fisslthaler ◽  
Voahanginirina Randriamboavonjy ◽  
Christian Ihling ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document