NMDA-mediated increase in renal sympathetic nerve discharge within the PVN: role of nitric oxide

2001 ◽  
Vol 281 (6) ◽  
pp. H2328-H2336 ◽  
Author(s):  
Yi-Fan Li ◽  
William G. Mayhan ◽  
Kaushik P. Patel

The paraventricular nucleus (PVN) of the hypothalamus is an important site of integration in the central nervous system for sympathetic outflow. Both glutamate and nitric oxide (NO) play an important role in the regulation of sympathetic nerve activity. The purpose of the present study was to examine the interaction of NO and glutamate within the PVN in the regulation of renal sympathetic nerve activity in rats. Renal sympathetic nerve discharge (RSND), arterial blood pressure (BP), and heart rate (HR) were measured in response to administration of N-methyl-d-aspartic acid (NMDA) and N G-monomethyl-l-arginine (l-NMMA) into the PVN. We found that microinjection of NMDA (25, 50, and 100 pmol) into the PVN increased RSND, BP, and HR in a dose-dependent manner, reaching 53 ± 9%, 19 ± 3 mmHg, and 32 ± 12 beats/min, respectively, at the highest dose. These responses were significantly enhanced by prior microinjection ofl-NMMA. On the other hand, inhibition of NO within the PVN by microinjection of l-NMMA also induced increases in RSND, BP, and HR in a dose-dependent manner, reaching 48 ± 6.5%, 11 ± 4 mmHg, and 55 ± 16 beats/min, respectively, at the highest dose. This sympathoexcitatory response was eliminated by prior microinjection of dl-2-amino-5-phosphonovaleric acid, an antagonist of the NMDA receptor. Furthermore, with the use of the push-pull technique, perfusion of glutamate (0.5 μmol) or NMDA (0.1 nmol) into the PVN induced an increase in NO release. In conclusion, our data indicate that NMDA receptors within the PVN mediate an excitatory effect on renal sympathetic nerve activity, arterial BP, and HR. NO in the PVN, which is released by activation of the NMDA receptor, also inhibits NMDA-mediated increases in sympathetic nerve activity. This negative feedback of NO on the glutamate system within the PVN may play an important role in maintaining the overall balance and tone of sympathetic outflow in normal and pathophysiological conditions known to have increased sympathetic tone.

1999 ◽  
Vol 277 (4) ◽  
pp. R1025-R1032 ◽  
Author(s):  
Tetsuro Shirasaka ◽  
Takato Kunitake ◽  
Kazuo Kato ◽  
Mayumi Takasaki ◽  
Hiroshi Kannan

Nociceptin, an endogenous agonist of the opioid receptor-like1 receptor, is expressed in the hypothalamus, where it is implicated in autonomic nervous system control. However, the central actions of nociceptin on sympathetic nerve activity have not been studied. We investigated the effect of intracerebroventricularly administered nociceptin (2–10 nmol) on blood pressure, heart rate (HR), and renal sympathetic nerve activity (RSNA) in conscious rats and sinoaortic-denervated (SAD) rats. Intracerebroventricularly administered nociceptin resulted in a dose-dependent decrease in mean arterial pressure (MAP) and HR in intact rats. RSNA decreased 31.5 ± 2.1 and 19.9 ± 5.0% at a dose of 2 and 5 nmol, respectively. In SAD rats, MAP, HR, and RSNA decreased in a dose-dependent manner, and the maximum responses were larger than those in intact rats. The decrease in HR induced by nociceptin was blocked by propranolol but not by atropine, which indicates that nociceptin is acting by inhibiting cardiac sympathetic outflow. These nociceptin-induced depressor and bradycardic responses were not antagonized by pretreatment with naloxone and nocistatin. These findings suggest that central nociceptin may have a functional role in regulating cardiovascular and sympathetic nervous systems.


1989 ◽  
Vol 256 (6) ◽  
pp. R1325-R1330 ◽  
Author(s):  
H. Kannan ◽  
Y. Hayashida ◽  
H. Yamashita

Our previous studies demonstrated that stimulation of the hypothalamic paraventricular nucleus (PVN) in anesthetized rats evoked a depressor response accompanied with a decrease in sympathetic outflow (H. Kannan, A. Niijima, and H. Yamashita, J. Auton. Nerv. Syst. 19: 83-86, 1987; H. Yamashita, H. Kannan, M. Kasai, and T. Osaka, J. Auton. Nerv. Syst. 19: 229-234, 1987). Because anesthesia may alter cardiovascular responses, we examined in conscious rats the effects of PVN stimulation on arterial pressure, heart rate, and renal sympathetic nerve activity. Electrical stimulation through chronically implanted electrodes evoked increases in arterial pressure and renal sympathetic nerve activity with a slight decrease in heart rate. The magnitude of responses was dependent on the frequency and the intensity of the stimulus. Latency of the excitatory response of the renal sympathetic nerve activity was approximately 70 ms. Microinjection of L-glutamate (0.5 M, 200 nl) into the PVN area also elicited increases in blood pressure and renal sympathetic nerve activity. These results suggest that activation of PVN neurons in conscious rats produces pressor responses due to an increase in the sympathetic outflow. These findings contrast with those obtained previously in anesthetized rats.


2006 ◽  
Vol 290 (4) ◽  
pp. R1035-R1043 ◽  
Author(s):  
Yi-Fan Li ◽  
Wei Wang ◽  
William G. Mayhan ◽  
Kaushik P. Patel

The paraventricular nucleus (PVN) of the hypothalamus is known to be an important site of integration in the central nervous system for sympathetic outflow. ANG II and nitric oxide (NO) play an important role in regulation of sympathetic nerve activity. The purpose of the present study was to examine how the interaction between NO and ANG II within the PVN affects sympathetic outflow in rats. Renal sympathetic nerve discharge (RSND), arterial blood pressure (AP), and heart rate (HR) were measured in response to administration of ANG II and NG-monomethyl-l-arginine (L-NMMA) into the PVN. Microinjection of ANG II (0.05, 0.5, and 1.0 nmol) into the PVN increased RSND, AP, and HR in a dose-dependent manner, resulting in increases of 53 ± 9%, 19 ± 3 mmHg, and 32 ± 12 beats/min from baseline, respectively, at the highest dose. These responses were significantly enhanced by prior microinjection of L-NMMA and were blocked by losartan, an ANG II type 1 receptor antagonist. Similarly, administration of antisense to neuronal NO synthase within the PVN also potentiated the ANG II responses. Conversely, overexpression of neuronal NOS within the PVN with adenoviral gene transfer significantly attenuated ANG II responses. Push-pull administration of ANG II (1 nmol) into the PVN induced an increase in NO release. Our data indicate that ANG II type 1 receptors within the PVN mediate an excitatory effect on RSND, AP, and HR. NO in the PVN, which can be induced by ANG II stimulation, in turn inhibits the ANG II-mediated increase in sympathetic nerve activity. This negative-feedback mechanism within the PVN may play an important role in maintaining the overall balance and tone of sympathetic outflow.


Hypertension ◽  
2021 ◽  
Vol 77 (1) ◽  
pp. 147-157
Author(s):  
Neeru M. Sharma ◽  
Andréa S. Haibara ◽  
Kenichi Katsurada ◽  
Shyam S. Nandi ◽  
Xuefei Liu ◽  
...  

Central infusion of Ang II (angiotensin II) has been associated with increased sympathetic outflow resulting in neurogenic hypertension. In the present study, we appraised whether the chronic increase in central Ang II activates the paraventricular nucleus of the hypothalamus (PVN) resulting in elevated sympathetic tone and altered baro- and chemoreflexes. Further, we evaluated the contribution of HIF-1α (hypoxia-inducible factor-1α), a transcription factor involved in enhancing the expression of N-methyl-D-aspartate receptors and thus glutamatergic-mediated sympathetic tone from the PVN. Ang II infusion (20 ng/minute, intracerebroventricular, 14 days) increased mean arterial pressure (126±9 versus 84±4 mm Hg), cardiac sympathetic tone (96±7 versus 75±6 bpm), and decreased cardiac parasympathetic tone (16±2 versus 36±3 versus bpm) compared with saline-infused controls in conscious rats. The Ang II-infused group also showed an impaired baroreflex control of heart rate (−1.50±0.1 versus −2.50±0.3 bpm/mm Hg), potentiation of the chemoreflex pressor response (53±7 versus 30±7 mm Hg) and increased number of FosB-labeled cells (53±3 versus 19±4) in the PVN. Concomitant with the activation of the PVN, there was an increased expression of HIF-1α and N-Methyl-D-Aspartate-type1 receptors in the PVN. Further, Ang II-infusion showed increased renal sympathetic nerve activity (20.5±2.3% versus 6.4±1.9% of Max) and 3-fold enhanced renal sympathetic nerve activity responses to microinjection of N-methyl-D-aspartate (200 pmol) into the PVN of anesthetized rats. Further, silencing of HIF-1α in NG108 cells abrogated the expression of N-methyl-D-aspartate-N-methyl-D-aspartate-type1 induced by Ang II. Taken together, our studies suggest a novel Ang II-HIF-1α-N-methyl-D-aspartate receptor-mediated activation of preautonomic neurons in the PVN, resulting in increased sympathetic outflow and alterations in baro- and chemoreflexes.


2002 ◽  
Vol 97 (2) ◽  
pp. 99-102 ◽  
Author(s):  
Akira Niijima ◽  
Tomoko Okui ◽  
Yasuo Matsumura ◽  
Toshihiko Yamano ◽  
Nobuo Tsuruoka ◽  
...  

1998 ◽  
Vol 274 (1) ◽  
pp. R97-R103 ◽  
Author(s):  
Yasuhiro Nishida ◽  
Isao Sugimoto ◽  
Hironobu Morita ◽  
Hiroshi Murakami ◽  
Hiroshi Hosomi ◽  
...  

Sodium ions absorbed from the intestine are postulated to act on the liver to reflexly suppress renal sympathetic nerve activity (RSNA), resulting in inhibition of sodium reabsorption in the kidney. To test the hypothesis that the renal sympathoinhibitory response to portal venous NaCl infusion involves an action of arginine vasopressin (AVP) at the area postrema, we examined the effects of portal venous infusion of hypertonic NaCl on RSNA before and after lesioning of the area postrema (APL) or after pretreatment with an AVP V1 receptor antagonist (AVPX). Rabbits were chronically instrumented with portal and femoral venous catheters, femoral arterial catheters, and renal nerve electrodes. Portal venous infusion of 9.0% NaCl (0.02, 0.05, 0.10, and 0.15 ml ⋅ kg−1 ⋅ min−1of 9.0% NaCl for 10 min) produced a dose-dependent suppression of RSNA (−12 ± 3, −34 ± 3, −62 ± 5, and 80 ± 2%, respectively) that was greater than that produced by femoral vein infusion of 9.0% NaCl (2 ± 3, −3 ± 2, −12 ± 4, and −33 ± 3%, respectively). The suppression of RSNA produced by portal vein infusion of 9.0% NaCl was partially reversed by pretreatment with AVPX (−9 ± 3, −20 ± 3, −41 ± 4, and −55 ± 4%, respectively) and by APL (−11 ± 2, −25 ± 2, −49 ± 3, and −59 ± 6%, respectively). There were no significant differences between the effects of AVPX and APL, and the effect of APL was not augmented by AVPX. These results indicate that the suppression of RSNA due to portal venous infusion of 9.0% NaCl involves an action of AVP via the area postrema.


Sign in / Sign up

Export Citation Format

Share Document