Comparative Studies on Acclimatization of Mice to Carbon Monoxide and to Low Oxygen

1952 ◽  
Vol 169 (2) ◽  
pp. 285-294 ◽  
Author(s):  
Robert T. Clark ◽  
Arthur B. Otis
1976 ◽  
Vol 41 (6) ◽  
pp. 893-899 ◽  
Author(s):  
M. P. Hlastala ◽  
H. P. McKenna ◽  
R. L. Franada ◽  
J. C. Detter

The oxygen dissociation curve and Bohr effect were measured in normal whole blood as a function of carboxyhemoglobin concentration [HbCO]. pH was changed by varying CO2 concentration (CO2 Bohr effect) or by addition of isotonic NaOH or HCl at constant PCO2 (fixed acid Bohr effect). As [HbCO] varied through the range of 2, 25, 50, and 75%, P50 was 26.3, 18.0, 11.6, and 6.5 mmHg, respectively. CO2 Bohr effect was highest at low oxygen saturations. This effect did not change as [HbCO] was increased. However, as [HbCO] was increased from 2 to 75%, the fixed acid Bohr factor increased in magnitude from -0.20 to -0.80 at very low oxygen saturations. The effect of molecular CO2 binding (carbamino) on oxygen affinity was eliminated at high [HbCO]. These results are consistent with the initial binding of O2 or CO to thealpha-chain of hemoglobin. The results also suggest that heme-heme interaction is different for oxygen than for carbon monoxide.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 924-924
Author(s):  
Natasha Archer ◽  
Nicole Petersen ◽  
Martha Clark ◽  
Manoj Duraisingh

Abstract Background: Despite the global acceptance of Haldane's hypothesis that individuals with sickle cell trait (AS) are protected against malaria, an exact mechanism of resistance remains unknown. Several theories to explain the resistance such as increased splenic destruction, impaired hemoglobin digestion, reduced cytoadherence and specific translocation of host specific microRNAs have been proposed. Here we carefully examine the influence of hypoxia and its relation to parasite cytoadherence and growth in AS and normal (AA) human red blood cells (RBCs). Materials and Methods: To assess the influence of oxygen tension on parasite proliferation in AS RBCs, we followed the proliferation of tightly synchronized P. falciparum within AS and AA RBCs at 1, 5, 10, and 17% oxygen by flow cytometry and microscopy. Carbon monoxide (CO) studies were performed by introducing 100% CO gas into our enclosed chamber system every 21 hours to prevent sickling at low oxygen. Results: Flow cytometry assessment of DNA content confirms the absence of DNA replication within parasites in AS erythrocytes at low oxygen, however normal DNA replication is observed in the presence of high oxygen tension and when CO is introduced at low oxygen. Moving parasites from high to low oxygen tension greatly influences the extent of parasite maturity; parasites moved at 16 and 20 hours post invasion (hpi) do not mature beyond that of the late ring/early trophozoite stage while parasites moved at 24, 28, and 32 hpi develop increasingly more merozoites. Conclusion: Here, we show that in hypoxic conditions parasites in AS erythrocytes stall at the late ring/early trophozoite stage and do not replicate their DNA. We also show that treatment of AS erythrocytes with high oxygen tension or carbon monoxide, a potent inhibitor of sickle hemoglobin polymerization, reverses this phenotype. We propose that the mechanism of AS protection is largely due to P.falciparum's inability to digest polymerized sickle hemoglobin once the parasite sequesters in the hypoxic microvasculature. This is likely a key driver of the reduced parasite densities observed in actual infections in AS individuals. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2016 ◽  
Vol 11 (3) ◽  
pp. 1-13
Author(s):  
Ize-Iyamu Christie ◽  
Ukpebor Ebehirieme ◽  
Ize-Iyamu Karl ◽  
Isara Rukevwe ◽  
Ukpebor Ehiabhi

2002 ◽  
Vol 295 (4) ◽  
pp. 975-977 ◽  
Author(s):  
Martin Westphal ◽  
Thomas Peter Weber ◽  
Jörg Meyer ◽  
Stefan von Kegler ◽  
Hugo Van Aken ◽  
...  
Keyword(s):  

1941 ◽  
Vol 133 (1) ◽  
pp. 188-188
Author(s):  
Frank W Maurer

Volume 133. On page 188 change second reference to Maurer, F. W from "This Journal 132: 170, 1941" to read "Maurer, F. W. This Journal 133: 170, 1941."


Sign in / Sign up

Export Citation Format

Share Document