oxygen affinity
Recently Published Documents


TOTAL DOCUMENTS

1384
(FIVE YEARS 118)

H-INDEX

56
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Kevin L. Webb ◽  
Paolo B. Dominelli ◽  
Sarah E. Baker ◽  
Stephen A. Klassen ◽  
Michael J. Joyner ◽  
...  

Humans elicit a robust series of physiological responses to maintain adequate oxygen delivery during hypoxia, including a transient reduction in hemoglobin-oxygen (Hb-O2) affinity. However, high Hb-O2 affinity has been identified as a beneficial adaptation in several species that have been exposed to high altitude for generations. The observed differences in Hb-O2 affinity between humans and species adapted to high altitude pose a central question: is higher or lower Hb-O2 affinity in humans more advantageous when O2 availability is limited? Humans with genetic mutations in hemoglobin structure resulting in high Hb-O2 affinity have shown attenuated cardiorespiratory adjustments during hypoxia both at rest and during exercise, providing unique insight into this central question. Therefore, the purpose of this review is to examine the influence of high Hb-O2 affinity during hypoxia through comparison of cardiovascular and respiratory adjustments elicited by humans with high Hb-O2 affinity compared to those with normal Hb-O2 affinity.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 132
Author(s):  
Mathilde Filser ◽  
Betty Gardie ◽  
Mathieu Wemeau ◽  
Patricia Aguilar-Martinez ◽  
Muriel Giansily-Blaizot ◽  
...  

High oxygen affinity hemoglobin (HOAH) is the main cause of constitutional erythrocytosis. Mutations in the genes coding the alpha and beta globin chains (HBA1, HBA2 and HBB) strengthen the binding of oxygen to hemoglobin (Hb), bringing about tissue hypoxia and a secondary erythrocytosis. The diagnosis of HOAH is based upon the identification of a mutation in HBA1, HBA2 or HBB in specialized laboratories. Phenotypic studies of Hb are also useful, but electrophoretic analysis can be normal in 1/3 of cases. The establishment of the dissociation curve of Hb can be used as another screening test, a shift to the left indicating an increased affinity for Hb. The direct measurement of venous P50 using a Hemox Analyzer is of great importance, but due to specific analytic conditions, it is only available in a few specialized laboratories. Alternatively, an estimated measurement of the P50 can be obtained in most of the blood gas analyzers on venous blood. The aim of our study was therefore to determine whether a normal venous P50 value could rule out HOAH. We sequenced the HBB, HBA1 and HBA2 genes of 75 patients with idiopathic erythrocytosis. Patients had previously undergone an exhaustive medical check-up after which the venous P50 value was defined as normal. Surprisingly, sequencing detected HOAH in three patients (Hb Olympia in two patients, and Hb St Nazaire in another). A careful retrospective examination of their medical files revealed that (i) one of the P50 samples was arterial; (ii) there was some air in another sample; and (iii) the P50 measurement was not actually done in one of the patients. Our study shows that in real life conditions, due to pre-analytical contingencies, a venous P50 value that is classified as being normal may not be sufficient to rule out a diagnosis of HOAH. Therefore, we recommend the systematic sequencing of the HBB, HBA1 and HBA2 genes in the exploration of idiopathic erythrocytosis.


2022 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
María Inés Marchesini ◽  
Ansgar Poetsch ◽  
Leticia Soledad Guidolín ◽  
Diego J. Comerci

Rhomboids are intramembrane serine proteases highly conserved in the three domains of life. Their key roles in eukaryotes are well understood but their contribution to bacterial physiology is still poorly characterized. Here we demonstrate that Brucella abortus, the etiological agent of the zoonosis called brucellosis, encodes an active rhomboid protease capable of cleaving model heterologous substrates like Drosophila melanogaster Gurken and Providencia stuartii TatA. To address the impact of rhomboid deletion on B. abortus physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. About 50% of the B. abortus predicted proteome was identified by quantitative proteomics under two experimental conditions and 108 differentially represented proteins were detected. Membrane associated proteins that showed variations in concentration in the mutant were considered as potential rhomboid targets. This class included nitric oxide reductase subunit C NorC (Q2YJT6) and periplasmic protein LptC involved in LPS transport to the outer membrane (Q2YP16). Differences in secretory proteins were also addressed. Differentially represented proteins included a putative lytic murein transglycosylase (Q2YIT4), nitrous-oxide reductase NosZ (Q2YJW2) and high oxygen affinity Cbb3-type cytochrome c oxidase subunit (Q2YM85). Deletion of rhomboid had no obvious effect in B. abortus virulence. However, rhomboid overexpression had a negative impact on growth under static conditions, suggesting an effect on denitrification enzymes and/or high oxygen affinity cytochrome c oxidase required for growth in low oxygen tension conditions.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 236
Author(s):  
Kamila Płoszczyca ◽  
Małgorzata Chalimoniuk ◽  
Iwona Przybylska ◽  
Miłosz Czuba

The aim of this study was to evaluate the effects of sodium phosphate (SP) supplementation on aerobic capacity in hypoxia. Twenty-four trained male cyclists received SP (50 mg·kg−1 of FFM/day) or placebo for six days in a randomized, crossover study, with a three-week washout period between supplementation phases. Before and after each supplementation phase, the subjects performed an incremental exercise test to exhaustion in hypoxia (FiO2 = 16%). Additionally, the levels of 2,3-diphosphoglycerate (2,3-DPG), hypoxia-inducible factor 1 alpha (HIF-1α), inorganic phosphate (Pi), calcium (Ca), parathyroid hormone (PTH) and acid-base balance were determined. The results showed that phosphate loading significantly increased the Pi level by 9.0%, whereas 2,3-DPG levels, hemoglobin oxygen affinity, buffering capacity and myocardial efficiency remained unchanged. The aerobic capacity in hypoxia was not improved following SP. Additionally, our data revealed high inter-individual variability in response to SP. Therefore, the participants were grouped as Responders and Non-Responders. In the Responders, a significant increase in aerobic performance in the range of 3–5% was observed. In conclusion, SP supplementation is not an ergogenic aid for aerobic capacity in hypoxia. However, in certain individuals, some benefits can be expected, but mainly in athletes with less training-induced central and/or peripheral adaptation.


Author(s):  
Hiroko X. Kondo ◽  
Yu Takano

Heme is located in the active site of proteins and has diverse and important biological functions, such as electron transfer and oxygen transport and/or storage. The distortion of heme porphyrin is considered an important factor for the diverse functions of heme because it correlates with the physical properties of heme, such as oxygen affinity and redox potential. Therefore, clarification of the relationship between heme distortion and the protein environment is crucial in protein science. Here, we analyzed the fluctuation in heme distortion in the protein environment for hemoglobin and myoglobin using molecular dynamics (MD) simulations and quantum mechanical (QM) calculations. We also investigated the protein structures of hemoglobin and myoglobin stored in Protein Data Bank and found that heme is distorted along the doming mode, which correlates with its oxygen affinity, more prominently in the protein environment than in the isolated state, and the magnitude of distortion is different between hemoglobin and myoglobin. This tendency was also observed in the results of MD simulations and QM calculations. These results suggest that heme distortion is affected by its protein environment and fluctuates around its fitted conformation, leading to physical properties that are appropriate for protein functions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J. M. Beman ◽  
S. M. Vargas ◽  
J. M. Wilson ◽  
E. Perez-Coronel ◽  
J. S. Karolewski ◽  
...  

AbstractOceanic oxygen minimum zones (OMZs) are globally significant sites of biogeochemical cycling where microorganisms deplete dissolved oxygen (DO) to concentrations <20 µM. Amid intense competition for DO in these metabolically challenging environments, aerobic nitrite oxidation may consume significant amounts of DO and help maintain low DO concentrations, but this remains unquantified. Using parallel measurements of oxygen consumption rates and 15N-nitrite oxidation rates applied to both water column profiles and oxygen manipulation experiments, we show that the contribution of nitrite oxidation to overall DO consumption systematically increases as DO declines below 2 µM. Nitrite oxidation can account for all DO consumption only under DO concentrations <393 nM found in and below the secondary chlorophyll maximum. These patterns are consistent across sampling stations and experiments, reflecting coupling between nitrate reduction and nitrite-oxidizing Nitrospina with high oxygen affinity (based on isotopic and omic data). Collectively our results demonstrate that nitrite oxidation plays a pivotal role in the maintenance and biogeochemical dynamics of OMZs.


2021 ◽  
pp. 375-403
Author(s):  
Esra’a Ali Mohammad Alomari ◽  
Luca Ronda ◽  
Stefano Bettati ◽  
Andrea Mozzarelli ◽  
Stefano Bruno

Author(s):  
Gabriela Giannina Schäfer ◽  
Lukas Jörg Grebe ◽  
Robin Schinkel ◽  
Bernhard Lieb

AbstractHemocyanin is the oxygen transport protein of most molluscs and represents an important physiological factor that has to be well-adapted to their environments because of the strong influences of abiotic factors on its oxygen affinity. Multiple independent gene duplications and intron gains have been reported for hemocyanin genes of Tectipleura (Heterobranchia) and the caenogastropod species Pomacea canaliculata, which contrast with the uniform gene architectures of hemocyanins in Vetigastropoda. The goal of this study was to analyze hemocyanin gene evolution within the diverse group of Caenogastropoda in more detail. Our findings reveal multiple gene duplications and intron gains and imply that these represent general features of Apogastropoda hemocyanins. Whereas hemocyanin exon–intron structures are identical within different Tectipleura lineages, they differ strongly within Caenogastropoda among phylogenetic groups as well as between paralogous hemocyanin genes of the same species. Thus, intron accumulation took place more gradually within Caenogastropoda but finally led to a similar consequence, namely, a multitude of introns. Since both phenomena occurred independently within Heterobranchia and Caenogastropoda, the results support the hypothesis that introns may contribute to adaptive radiation by offering new opportunities for genetic variability (multiple paralogs that may evolve differently) and regulation (multiple introns). Our study indicates that adaptation of hemocyanin genes may be one of several factors that contributed to the evolution of the large diversity of Apogastropoda. While questions remain, this hypothesis is presented as a starting point for the further study of hemocyanin genes and possible correlations between hemocyanin diversity and adaptive radiation.


Sign in / Sign up

Export Citation Format

Share Document