Response of mouse liver glycogen cycle enzymes to endotoxin treatment

1976 ◽  
Vol 231 (4) ◽  
pp. 1285-1289 ◽  
Author(s):  
O Giger ◽  
RE McCallum

The present study was undertaken to characterize endotoxin-induced changes in carbohydrate metabolism and more specifically, to determine the contribution of glycogenolysis to the loss of liver glycogen. Female ICR mice, fasted overnight, were injected with a median lethal dose (LD50, 9 mg/kg) of endotoxin extracted from Salmonella typhimurium strain SR-11. Glycogen synthase and glycogen phosphorylase activities were measured at 0.5 and 6 h after treatment. Endotoxin treatment did not alter total glycogen synthase activity, but the amount of enzyme present in the active form was significantly lower in endotoxic mice. There was no significant increase in glycogen phosphorylase activity in endotoxin-treated mice. Glycogen phosphorylase was activated to the same extent in control and endotoxic mice by decapitation or intravenous epinephrine (25 or 1 mug/kg). The results of this study indicate no significant increase in glycogen phosphorylase activity in endotoxic mice, contraindicating enhanced glycogenolysis as a mechanism for depletion of carbohydrate following endotoxin injection. Altered activation of glycogen synthase, however, may contribute to the loss of glycogen during endotoxemia.

2005 ◽  
Vol 25 (21) ◽  
pp. 9713-9723 ◽  
Author(s):  
Young-Bum Kim ◽  
Odile D. Peroni ◽  
William G. Aschenbach ◽  
Yasuhiko Minokoshi ◽  
Ko Kotani ◽  
...  

ABSTRACT Mice with muscle-specific knockout of the Glut4 glucose transporter (muscle-G4KO) are insulin resistant and mildly diabetic. Here we show that despite markedly reduced glucose transport in muscle, muscle glycogen content in the fasted state is increased. We sought to determine the mechanism(s). Basal glycogen synthase activity is increased by 34% and glycogen phosphorylase activity is decreased by 17% (P < 0.05) in muscle of muscle-G4KO mice. Contraction-induced glycogen breakdown is normal. The increased glycogen synthase activity occurs in spite of decreased signaling through the insulin receptor substrate 1 (IRS-1)-phosphoinositide (PI) 3-kinase-Akt pathway and increased glycogen synthase kinase 3β (GSK3β) activity in the basal state. Hexokinase II is increased, leading to an approximately twofold increase in glucose-6-phosphate levels. In addition, the levels of two scaffolding proteins that are glycogen-targeting subunits of protein phosphatase 1 (PP1), the muscle-specific regulatory subunit (RGL) and the protein targeting to glycogen (PTG), are strikingly increased by 3.2- to 4.2-fold in muscle of muscle-G4KO mice compared to wild-type mice. The catalytic activity of PP1, which dephosphorylates and activates glycogen synthase, is also increased. This dominates over the GSK3 effects, since glycogen synthase phosphorylation on the GSK3-regulated site is decreased. Thus, the markedly reduced glucose transport in muscle results in increased glycogen synthase activity due to increased hexokinase II, glucose-6-phosphate, and RGL and PTG levels and enhanced PP1 activity. This, combined with decreased glycogen phosphorylase activity, results in increased glycogen content in muscle in the fasted state when glucose transport is reduced.


2002 ◽  
Vol 68 (7) ◽  
pp. 3339-3344 ◽  
Author(s):  
R. Pérez-Torrado ◽  
J. V. Gimeno-Alcañiz ◽  
E. Matallana

ABSTRACT We used metabolic engineering to produce wine yeasts with enhanced resistance to glucose deprivation conditions. Glycogen metabolism was genetically modified to overproduce glycogen by increasing the glycogen synthase activity and eliminating glycogen phosphorylase activity. All of the modified strains had a higher glycogen content at the stationary phase, but accumulation was still regulated during growth. Strains lacking GPH1, which encodes glycogen phosphorylase, are unable to mobilize glycogen. Enhanced viability under glucose deprivation conditions occurs when glycogen accumulates in the strain that overexpresses GSY2, which encodes glycogen synthase and maintains normal glycogen phosphorylase activity. This enhanced viability is observed under laboratory growth conditions and under vinification conditions in synthetic and natural musts. Wines obtained from this modified strain and from the parental wild-type strain don't differ significantly in the analyzed enological parameters. The engineered strain might better resist some stages of nutrient depletion during industrial use.


Sign in / Sign up

Export Citation Format

Share Document