Surfactant protein D increases phagocytosis and aggregation of pollen-allergen starch granules

2005 ◽  
Vol 288 (4) ◽  
pp. L692-L698 ◽  
Author(s):  
Veit J. Erpenbeck ◽  
Delphine C. Malherbe ◽  
Stefanie Sommer ◽  
Andreas Schmiedl ◽  
Wolfram Steinhilber ◽  
...  

Recent studies have shown that surfactant components, in particular the collectins surfactant protein (SP)-A and -D, modulate the phagocytosis of various pathogens by alveolar macrophages. This interaction might be important not only for the elimination of pathogens but also for the elimination of inhaled allergens and might explain anti-inflammatory effects of SP-A and SP-D in allergic airway inflammation. We investigated the effect of surfactant components on the phagocytosis of allergen-containing pollen starch granules (PSG) by alveolar macrophages. PSG were isolated from Dactylis glomerata or Phleum pratense, two common grass pollen allergens, and incubated with either rat or human alveolar macrophages in the presence of recombinant human SP-A, SP-A purified from patients suffering from alveolar proteinosis, a recombinant fragment of human SP-D, dodecameric recombinant rat SP-D, or the commercially available surfactant preparations Curosurf and Alveofact. Dodecameric rat recombinant SP-D enhanced binding and phagocytosis of the PSG by alveolar macrophages, whereas the recombinant fragment of human SP-D, SP-A, or the surfactant lipid preparations had no effect. In addition, recombinant rat SP-D bound to the surface of the PSG and induced aggregation. Binding, aggregation, and enhancement of phagocytosis by recombinant rat SP-D was completely blocked by EDTA and inhibited by d-maltose and to a lesser extent by d-galactose, indicating the involvement of the carbohydrate recognition domain of SP-D in these functions. The modulation of allergen phagocytosis by SP-D might play an important role in allergen clearance from the lung and thereby modulate the allergic inflammation of asthma.

1994 ◽  
Vol 300 (1) ◽  
pp. 237-242 ◽  
Author(s):  
K Miyamura ◽  
L E A Leigh ◽  
J Lu ◽  
J Hopkin ◽  
A López Bernal ◽  
...  

Surfactant protein D (SP-D) is a lung-specific protein, synthesized and secreted by lung epithelial cells. It belongs to group III of the family of C-type lectins; each member of this group has an unusual overall structure consisting of multiple globular ‘head’ regions (which contain the C-type lectin domains) linked by triple-helical, collagen-like, strands. This group includes the surfactant protein A (SP-A) and the serum proteins mannan-binding protein, conglutinin and collectin-43, all of which have been shown to bind to the C1q receptor found on a wide variety of cells, including macrophages. Both SP-D and SP-A have been shown to enhance oxygen radical production by alveolar macrophages. Although this strongly suggests a direct interaction between SP-D and a specific receptor on alveolar macrophages, it is still unclear whether SP-D binds to the same receptor used by SP-A and/or C1q. Human SP-D was isolated from amniotic fluid and was radiolabelled using 125I. Alveolar macrophages were isolated from human bronchioalveolar lavage fluid, and also from bovine lung washings, by differential adhesion to 24-well tissue-culture plates. The study was carried out using EDTA-containing buffers, to eliminate Ca(2+)-dependent C-type lectin binding, and was also carried out at 4 degrees C to eliminate possible internalization by the cells. 125I-SP-D showed specific binding to alveolar macrophages in both a time- and concentration-saturable manner. The binding was inhibited, by approx. 90%, on addition of a 200-fold excess of unlabelled SP-D. The apparent dissociation constant (Kd) was (3.6 +/- 1.3) x 10(-11) M, based on the assumption that native SP-D is assembled as a dodecamer of 12 identical polypeptides of 43 kDa to yield a protein of 516 kDa. C1q was also shown to bind alveolar macrophages (Kd 3 x 10(-6) M), but addition of C1q did not show inhibition of the binding of 125I-SP-D to the macrophages. We conclude that SP-D binds specifically to alveolar macrophages and the receptor involved is different from that utilized by C1q.


1992 ◽  
Vol 286 (1) ◽  
pp. 5-8 ◽  
Author(s):  
J F Van Iwaarden ◽  
H Shimizu ◽  
P H M Van Golde ◽  
D R Voelker ◽  
L M G Van Golde

Rat surfactant protein D (SP-D) was shown to enhance the production of oxygen radicals by rat alveolar macrophages. This enhancement, which was determined by a lucigenin-dependent chemiluminescence assay, was maximal after 18 min at an SP-D concentration of 0.2 micrograms/ml. Surfactant lipids did not influence the stimulation of alveolar macrophages by SP-D, whereas the oxygen-radical production of these cells induced by surfactant protein A was inhibited by the lipids in a concentration-dependent manner.


2009 ◽  
Vol 292 (2) ◽  
pp. 183-189 ◽  
Author(s):  
Lars Knudsen ◽  
Katharina Wucherpfennig ◽  
Rose-Marie Mackay ◽  
Paul Townsend ◽  
Christian Mühlfeld ◽  
...  

1995 ◽  
Vol 95 (6) ◽  
pp. 2699-2710 ◽  
Author(s):  
D M O'Riordan ◽  
J E Standing ◽  
K Y Kwon ◽  
D Chang ◽  
E C Crouch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document