Thermal sensitivity of isolated vagal pulmonary sensory neurons: role of transient receptor potential vanilloid receptors

2006 ◽  
Vol 291 (3) ◽  
pp. R541-R550 ◽  
Author(s):  
Dan Ni ◽  
Qihai Gu ◽  
Hong-Zhen Hu ◽  
Na Gao ◽  
Michael X. Zhu ◽  
...  

A recent study has demonstrated that increasing the intrathoracic temperature from 36°C to 41°C induced a distinct stimulatory and sensitizing effect on vagal pulmonary C-fiber afferents in anesthetized rats ( J Physiol 565: 295–308, 2005). We postulated that these responses are mediated through a direct activation of the temperature-sensitive transient receptor potential vanilloid (TRPV) receptors by hyperthermia. To test this hypothesis, we studied the effect of increasing temperature on pulmonary sensory neurons that were isolated from adult rat nodose/jugular ganglion and identified by retrograde labeling, using the whole cell perforated patch-clamping technique. Our results showed that increasing temperature from 23°C (or 35°C) to 41°C in a ramp pattern evoked an inward current, which began to emerge after exceeding a threshold of ∼34.4°C and then increased sharply in amplitude as the temperature was further increased, reaching a peak current of 173 ± 27 pA ( n = 75) at 41°C. The temperature coefficient, Q10, was 29.5 ± 6.4 over the range of 35–41°C. The peak inward current was only partially blocked by pretreatment with capsazepine (Δ I = 48.1 ± 4.7%, n = 11) or AMG 9810 (Δ I = 59.2 ± 7.8%, n = 8), selective antagonists of the TRPV1 channel, but almost completely abolished (Δ I = 96.3 ± 2.3%) by ruthenium red, an effective blocker of TRPV1–4 channels. Furthermore, positive expressions of TRPV1–4 transcripts and proteins in these neurons were demonstrated by RT-PCR and immunohistochemistry experiments, respectively. On the basis of these results, we conclude that increasing temperature within the normal physiological range can exert a direct stimulatory effect on pulmonary sensory neurons, and this effect is mediated through the activation of TRPV1, as well as other subtypes of TRPV channels.

2008 ◽  
Vol 295 (5) ◽  
pp. L897-L904 ◽  
Author(s):  
Dan Ni ◽  
Lu-Yuan Lee

Our recent study (Ni D, Lee LY. Am J Physiol Lung Cell Mol Physiol 294: L563–L571, 2008) demonstrated that the responses of rat pulmonary sensory neurons to transient receptor potential vanilloid (TRPV)1 activators were enhanced by increasing temperature, but the role of the TPRV1 channel in this potentiating effect could not be definitively evaluated. In the present study, we used whole cell perforated patch-clamp technique to compare the responses of isolated nodose/jugular sensory neurons to chemical activators and increasing temperature between wild-type (WT) and TRPV1-null (TRPV1−/−) mice. Our results showed that, in voltage-clamp mode, the peak inward current evoked by hyperthermia was not different between WT and TRPV1−/− neurons; however, the inward current evoked by 2-aminoethoxydiphenyl borate (2-APB), a common activator of TRPV1–3 channels, was greatly potentiated by increasing temperature from 36 to 40.5°C in WT neurons ( n = 9; P < 0.01) but was not affected by the same change in temperature in TRPV1−/− neurons ( n = 9; P = 0.54). Similarly, the inward current evoked by acid (pH 5.5), an activator of both TRPV1 channel and the acid-sensing ion channel, was enhanced by increasing temperature ( n = 7; P < 0.05) in WT neurons, and this potentiating effect was absent in TRPV1−/− neurons ( n = 13; P = 0.11). These results demonstrated that deletion of the TRPV1 channel does not significantly alter the stimulatory effect of hyperthermia on nodose/jugular neurons but eliminates the potentiating effect of increasing temperature on the responses of these neurons to nonselective TRPV1 channel activators. This study further suggests that a positive interaction between these chemical activators and increasing temperature at the TRPV1 channel is primarily responsible for the hyperthermia-induced sensitization of these neurons.


2006 ◽  
Vol 291 (1) ◽  
pp. L58-L65 ◽  
Author(s):  
Qihai Gu ◽  
Lu-Yuan Lee

Local tissue acidosis frequently occurs in airway inflammatory and ischemic conditions. The effect of physiological/pathophysiological-relevant low pH (7.0–5.5) on isolated rat vagal pulmonary sensory neurons was investigated using whole cell perforated patch-clamp recordings. In voltage-clamp recordings, vagal pulmonary sensory neurons exhibited distinct pH sensitivities and different phenotypes of inward current in responding to acidic challenge. The current evoked by lowering the pH of extracellular solution to 7.0 consisted of only a transient, rapidly inactivating component with small amplitude. The amplitude of this transient current increased when the proton concentration was elevated. In addition, a slow, sustained inward current began to emerge when pH was reduced to <6.5. The current-voltage curve indicated that the transient component of acid-evoked current was carried predominantly by Na+. This transient component was dose-dependently inhibited by amiloride, a common blocker of acid-sensing ion channels (ASICs), whereas the sustained component was significantly attenuated by capsazepine, a selective antagonist of transient receptor potential vanilloid receptor subtype-1 (TRPV1). The two components of acid-evoked current also displayed distinct recovery kinetics from desensitization. Furthermore, in current-clamp recordings, transient extracellular acidification depolarized the membrane potential and generated action potentials in these isolated neurons. In summary, our results have demonstrated that low pH can stimulate rat vagal pulmonary sensory neurons through the activation of both ASICs and TRPV1. The relative roles of these two current species depend on the range of pH and vary between neurons.


2008 ◽  
Vol 294 (5) ◽  
pp. G1288-G1298 ◽  
Author(s):  
Walter E. B. Sipe ◽  
Stuart M. Brierley ◽  
Christopher M. Martin ◽  
Benjamin D. Phillis ◽  
Francisco Bautista Cruz ◽  
...  

Protease-activated receptor (PAR2) is expressed by nociceptive neurons and activated during inflammation by proteases from mast cells, the intestinal lumen, and the circulation. Agonists of PAR2 cause hyperexcitability of intestinal sensory neurons and hyperalgesia to distensive stimuli by unknown mechanisms. We evaluated the role of the transient receptor potential vanilloid 4 (TRPV4) in PAR2-induced mechanical hyperalgesia of the mouse colon. Colonic sensory neurons, identified by retrograde tracing, expressed immunoreactive TRPV4, PAR2, and calcitonin gene-related peptide and are thus implicated in nociception. To assess nociception, visceromotor responses (VMR) to colorectal distension (CRD) were measured by electromyography of abdominal muscles. In TRPV4+/+ mice, intraluminal PAR2 activating peptide (PAR2-AP) exacerbated VMR to graded CRD from 6–24 h, indicative of mechanical hyperalgesia. PAR2-induced hyperalgesia was not observed in TRPV4−/− mice. PAR2-AP evoked discharge of action potentials from colonic afferent neurons in TRPV4+/+ mice, but not from TRPV4−/− mice. The TRPV4 agonists 5′,6′-epoxyeicosatrienoic acid and 4α-phorbol 12,13-didecanoate stimulated discharge of action potentials in colonic afferent fibers and enhanced current responses recorded from retrogradely labeled colonic dorsal root ganglia neurons, confirming expression of functional TRPV4. PAR2-AP enhanced these responses, indicating sensitization of TRPV4. Thus TRPV4 is expressed by primary spinal afferent neurons innervating the colon. Activation of PAR2 increases currents in these neurons, evokes discharge of action potentials from colonic afferent fibers, and induces mechanical hyperalgesia. These responses require the presence of functional TRPV4. Therefore, TRPV4 is required for PAR2-induced mechanical hyperalgesia and excitation of colonic afferent neurons.


2007 ◽  
Vol 292 (3) ◽  
pp. H1390-H1397 ◽  
Author(s):  
Sean P. Marrelli ◽  
Roger G. O'Neil ◽  
Rachel C. Brown ◽  
Robert M. Bryan

We previously demonstrated that endothelium-derived hyperpolarizing factor (EDHF)-mediated dilations in cerebral arteries are significantly reduced by inhibitors of PLA2. In this study we examined possible mechanisms by which PLA2 regulates endothelium-dependent dilation, specifically whether PLA2 is involved in endothelial Ca2+ regulation through stimulation of TRPV4 channels. Studies were carried out with middle cerebral arteries (MCA) or freshly isolated MCA endothelial cells (EC) of male Long-Evans rats. Nitro-l-arginine methyl ester (l-NAME) and indomethacin were present throughout. In pressurized MCA, luminally delivered UTP produced increased EC intracellular Ca2+ concentration ([Ca2+]i) and MCA dilation. Incubation with PACOCF3, a PLA2 inhibitor, significantly reduced both EC [Ca2+]i and dilation responses to UTP. EC [Ca2+]i was also partially reduced by a transient receptor potential vanilloid (TRPV) channel blocker, ruthenium red. Manganese quenching experiments demonstrated Ca2+ influx across the luminal and abluminal face of the endothelium in response to UTP. Interestingly, PLA2-sensitive Ca2+ influx occurred primarily across the abluminal face. Luminal application of arachidonic acid, the primary product of PLA2 and a demonstrated activator of certain TRPV channels, increased both EC [Ca2+]i and MCA diameter. TRPV4 mRNA and protein was demonstrated in the endothelium by RT-PCR and immunofluorescence, respectively. Finally, application of 4α-phorbol 12,13-didecanoate (4αPDD), a TRPV4 channel activator, produced an increase in EC [Ca2+]i that was significantly reduced in the presence of ruthenium red. We conclude that PLA2 is involved in EC Ca2+ regulation through its regulation of TRPV4 channels. Furthermore, the PLA2-sensitive component of Ca2+ influx may be polarized to the abluminal face of the endothelium.


Sign in / Sign up

Export Citation Format

Share Document