Carrier-mediated urea transport across the mitochondrial membrane of an elasmobranch (Raja erinacea) and a teleost (Oncorhynchus mykiss) fish

2008 ◽  
Vol 294 (6) ◽  
pp. R1947-R1957 ◽  
Author(s):  
T. M. Rodela ◽  
J. S. Ballantyne ◽  
P. A. Wright

In osmoregulating teleost fish, urea is a minor nitrogen excretory product, whereas in osmoconforming marine elasmobranchs it serves as the major tissue organic solute and is retained at relatively high concentrations (∼400 mmol/l). We tested the hypothesis that urea transport across liver mitochondria is carrier mediated in both teleost and elasmobranch fishes. Intact liver mitochondria in rainbow trout ( Oncorhynchus mykiss) demonstrated two components of urea uptake, a linear component at high concentrations and a phloretin-sensitive saturable component [Michaelis constant ( Km) = 0.58 mmol/l; maximal velocity ( Vmax) = 0.12 μmol·h−1·mg protein−1] at lower urea concentrations (<5 mmol/l). Similarly, analysis of urea uptake in mitochondria from the little skate ( Raja erinacea) revealed a phloretin-sensitive saturable transport ( Km= 0.34 mmol/l; Vmax= 0.054 μmol·h−1·mg protein−1) at low urea concentrations (<5 mmol/l). Surprisingly, urea transport in skate, but not trout, was sensitive to a variety of classic ionophores and respiration inhibitors, suggesting cation sensitivity. Hence, urea transport was measured in the reverse direction using submitochondrial particles in skate. Transport kinetics, inhibitor response, and pH sensitivity were very similar in skate submitochondrial particle submitochondrial particles ( Km= 0.65 mmol/l, Vmax= 0.058 μmol·h−1·mg protein−1) relative to intact mitochondria. We conclude that urea influx and efflux in skate mitochondria is dependent, in part, on a bidirectional proton-sensitive mechanism similar to bacterial urea transporters and reminiscent of their ancestral origins. Rapid equilibration of urea across the mitochondrial membrane may be vital for cell osmoregulation (elasmobranch) or nitrogen waste excretion (teleost).

1991 ◽  
Vol 69 (11) ◽  
pp. 1705-1712 ◽  
Author(s):  
Noburu Konno ◽  
K. J. Kako

Hydrogen peroxide (H2O2) and hypochlorite (HOCl) cause a variety of cellular dysfunctions. In this study we examined the effects of these agents on the electrical potential gradient across the inner membrane of mitochondria in situ in isolated rat heart myocytes. Myocytes were prepared by collagenase digestion and incubated in the presence of H2O2 or HOCl. Transmembrane electrical gradients were measured by distribution of [3H]triphenylmethylphosphonium+, a lipophilic cation. The particulate fraction was separated from the cytosolic compartment first by permeabilization using digitonin, followed by rapid centrifugal sedimentation through a bromododecane layer. We found that the mitochondrial membrane potential (161 ± 7 mV, negative inside) was relatively well maintained under oxidant stress, i.e., the potential was decreased only at high concentrations of HOCl and H2O2 and gradually with time. The membrane potential of isolated rat heart mitochondria was affected similarly by H2O2 and HOCl in a concentration- and time-dependent manner. High concentrations of oxidants also reduced the cellular ATP level but did not significantly change the matrix volume. When the extra-mitochondrial free calcium concentration was increased in permeabilized myocytes, the transmembrane potential was decreased proportionally, and this decrease was potentiated further by H2O2. These results support the view that heart mitochondria are equipped with well-developed defense mechanisms against oxidants, but the action of H2O2 on the transmembrane electrical gradient is exacerbated by an increase in cytosolic calcium. Keywords: ATP, calcium, cardiomyocyte, cell defense, mitochondrial membrane potential, oxidant, triphenylmethylphosphonium.


2000 ◽  
Vol 203 (20) ◽  
pp. 3199-3207 ◽  
Author(s):  
C.M. Pilley ◽  
P.A. Wright

We tested the hypothesis that urea transport in rainbow trout (Oncorhynchus mykiss) embryos is dependent, in part, on a bidirectional urea-transport protein. Acute exposure to phloretin and urea analogs [acetamide, thiourea, 1,(4-nitrophenyl)-2-thiourea] reversibly inhibited urea excretion from the embryos to the external water. Unidirectional urea influx was inhibited by acetamide and thiourea, with IC(50) values of 0.04 and 0.05 mmol l(−1), respectively. Influx of urea from the external water to the embryo tended to saturate at elevated external urea concentrations (V(max)=10.50 nmol g(−1) h(−1); K(m)=2 mmol l(−1)). At very high urea concentrations (20 mmol l(−1)), however, a second, non-saturable component was apparent. These results indicate that urea excretion in trout embryos is dependent, in part, on a phloretin-sensitive facilitated urea transporter similar to that reported in mammalian inner medullary collecting ducts and elasmobranch kidney.


1976 ◽  
Vol 158 (2) ◽  
pp. 295-305 ◽  
Author(s):  
N Gains ◽  
A P Dawson

A comparison of the fluorescence change on the addition of 8-anilinonaphthalene-1-sulphonate to succinate-energized submitochondrial particles with that on the addition of succinate to submitochondrial particles incubated with 8-anilinonaphthalene-1-sulphonate shows that these changes in fluorescence may be explained solely in terms of 8-anilinonaphthalene-1-sulphonate binding. This comparison does not support the proposal of an 8-anilinonaphthalene-1-sulphonate-monitored change in the conformation of submitochondrial-particle membranes [Brocklehurst, Freedman, Hancock & Radda (1970) Biochem. J.116, 721-731]. The biphasic nature of the decrease in fluorescence, which was found to follow the addition of uncoupler to submitochondrial particles incubated with ATP or succinate, or of antimycin A to submitochondrial particles incubated with succinate, does not support the existence of ‘aplectic’ and ‘symplectic’ states of the mitochondrial membrane [Barrett-Bee & Radda (1972) Biochim, Biophys. Acta 267, 211-215].


1980 ◽  
Vol 188 (2) ◽  
pp. 329-335 ◽  
Author(s):  
M E Koller ◽  
I Romslo

Rat liver mitochondria accumulate protoporphyrin IX from the suspending medium into the inner membrane in parallel with the magnitude of the transmembrane K+ gradient (K+in/K+out). Only protoporphyrin IX taken up in parallel with the transmembrane K+ gradient is available for haem synthesis. Coproporphyrins (isomers I and III) are not taken up by the mitochondria. The results support the suggestion by Elder & Evans [(1978) Biochem. J. 172, 345-347] that the prophyrin to be taken up by the inner mitochondrial membrane belongs to the protoporphyrin(ogen) IX series. Protoporphyrin IX at concentrations above 15 nmol/mg of protein has detrimental effects on the structural and functional integrity of the mitochondria. The relevance of these effects to the hepatic lesion in erythropoietic protoporphyria is discussed.


1988 ◽  
Vol 90 (4) ◽  
pp. 707-716
Author(s):  
J.R. Nilsson

A study was made of the effects of cisplatin, cis-dichlorodiammineplatinum(II) (5–250 mg l-1), on the physiology and fine structure of Tetrahymena. The physiological effects observed were dose-dependent. Endocytosis was inhibited reversibly in all, but late in the high, concentrations. After an initial dose-related increase, due to division of cells most advanced in the cell cycle, proliferation ceased for at least two normal cell generations (6 h) in 50 and 100 mg drug l-1, but for 24 h in 250 mg l-1, after which multiplication was resumed in a dose-dependent manner. Exposure to cisplatin resulted in the appearance of small, refractive granules and platinum (i.e. electron-dense material) accumulated in these granules. Fine structural observations of cells exposed to 250 mg drug l-1 showed nucleolar fusion and appearance initially of lipid droplets, dense granules and autophagosomes. A time-dependent redistribution of cell organelles was revealed by morphometry; in particular, the mitochondria increased in number, but decreased in size. Moreover, after prolonged treatment (24 h) and without cell division, the inner mitochondrial membrane had diminished and the ratio of the inner to the outer mitochondrial membrane was only half of the value for control mitochondria. Concomitantly with this decrease, the cell content of ATP was reduced to a similar extent. The findings indicate a specific action of cisplatin on mitochondria, resembling that induced in Tetrahymena by chloramphenicol and methotrexate.


2019 ◽  
Vol 222 (18) ◽  
pp. jeb203687 ◽  
Author(s):  
Sarah Séité ◽  
Karthik Masagounder ◽  
Cécile Heraud ◽  
Vincent Véron ◽  
Lucie Marandel ◽  
...  

1963 ◽  
Vol 41 (1) ◽  
pp. 1495-1501 ◽  
Author(s):  
L. H. Cohen ◽  
R. E. Parks Jr.

8-Azaguanosine triphosphate can function in place of GTP in the reaction catalyzed by adenylosuccinic synthetase. The Michaelis constant and maximal velocity for the reaction obtained with the analogue are lower than those obtained with GTP. As a result, 8-azaGTP increases the reaction rate at low GTP concentrations and inhibits competitively at high GTP concentrations. It is suggested that this type of inhibition might be exploited in the development of chemo-therapeutic analogues specific for tissues containing high concentrations of a coenzyme or metabolite.


1997 ◽  
Vol 52 (11-12) ◽  
pp. 799-806 ◽  
Author(s):  
Celene F. Bernardes ◽  
Jose R. Meyer-Fernandes ◽  
Orlando B. Martins ◽  
Anibal E. Vercesi

Abstract This study shows that incubation of rat liver mitochondria in the presence of the thiol/ amino reagent 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DID S) is followed by inhibition of both succinate supported respiration and oxidative phosphorylation. Half-maximal inhibition of succinic dehydrogenase activity and succinate oxidation by mitochondria was attained at 55.3 and 60.8 μm DIDS, respectively. DIDS did inhibit the net ATP synthesis and ATP ⇔ [32P]Pi exchange reaction catalyzed by submitochondrial particles in a dose-dependent manner (Ki= 31.7 μm and Ki = 32.7 μm), respectively. The hydrolytic activities of uncoupled heart submitochondrial particles and purified F 1 -ATPase were also inhibited 50% by 31.9 and 20.9 μm DIDS, respectively.


Sign in / Sign up

Export Citation Format

Share Document