Inhibition of Succinic Dehydrogenase and F0F1-ATP Synthase by 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic Acid (DIDS)

1997 ◽  
Vol 52 (11-12) ◽  
pp. 799-806 ◽  
Author(s):  
Celene F. Bernardes ◽  
Jose R. Meyer-Fernandes ◽  
Orlando B. Martins ◽  
Anibal E. Vercesi

Abstract This study shows that incubation of rat liver mitochondria in the presence of the thiol/ amino reagent 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DID S) is followed by inhibition of both succinate supported respiration and oxidative phosphorylation. Half-maximal inhibition of succinic dehydrogenase activity and succinate oxidation by mitochondria was attained at 55.3 and 60.8 μm DIDS, respectively. DIDS did inhibit the net ATP synthesis and ATP ⇔ [32P]Pi exchange reaction catalyzed by submitochondrial particles in a dose-dependent manner (Ki= 31.7 μm and Ki = 32.7 μm), respectively. The hydrolytic activities of uncoupled heart submitochondrial particles and purified F 1 -ATPase were also inhibited 50% by 31.9 and 20.9 μm DIDS, respectively.

1990 ◽  
Vol 127 (1) ◽  
pp. 161-165 ◽  
Author(s):  
M. Nukatsuka ◽  
Y. Yoshimura ◽  
M. Nishida ◽  
J. Kawada

ABSTRACT The effects of streptozotocin (STZ) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) on monolayer cultures of rat pancreatic β cells were compared. The intracellular NAD concentration was markedly decreased by both 2 mmol STZ/l and 13·6 μmol MNNG/l, but insulin secretion was decreased significantly only by STZ. The intracellular ATP level decreased rapidly and in a time-dependent manner with STZ, but decreased less on treatment with MNNG: 80% decrease with STZ but only 35% decrease with MNNG in 12 h in the cells exposed to the chemicals for 1 h and then washed thoroughly. STZ decreased oxygen consumption of rat liver mitochondria in a time- and dose-dependent manner and enhanced the generation of hydroxyl radicals (DMPO-adducts). This enhancement was doubled on the addition of succinate as a substrate. Mitochondrial ATP production was also decreased significantly by STZ, but not by MNNG. Thus the marked depletion of intracellular ATP in β cells by STZ seems to be due mainly to a direct effect on mitochondrial production. From these results, we suggest that the cytotoxic effect of STZ in pancreatic β cells is due to a reduction in the intracellular level of ATP, rather than of NAD. Journal of Endocrinology (1990) 127, 161–165


1969 ◽  
Vol 111 (5) ◽  
pp. 665-678 ◽  
Author(s):  
D. D. Tyler

1. The organic mercurial sodium mersalyl, formaldehyde, dicyclohexylcarbodiimide and tributyltin each blocked respiratory-chain-linked ATP synthesis in rat liver mitochondria. 2. Mersalyl and formaldehyde also blocked a number of other processes dependent on the entry of inorganic phosphate into mitochondria, including mitochondrial respiration and swelling stimulated by cations and phosphate, the substrate-level phosphorylation reaction of the citric acid cycle, and swelling in ammonium phosphate. 3. Dicyclohexylcarbodi-imide and tributyltin did not inhibit the entry of phosphate into mitochondria. 4. Mersalyl and formaldehyde had a relatively slight effect on succinate oxidation and swelling stimulated by cations when phosphate was replaced by acetate, on succinate oxidation stimulated by uncoupling agents, and on swelling in solutions of ammonium salts other than phosphate or arsenate. 5. Formaldehyde blocked the oxidation of NAD-linked substrates in mitochondria treated with 2,4-dinitrophenol and the ATP-dependent reduction of NAD by succinate catalysed by ox heart submitochondrial particles. Both these effects appear to be due to an inhibition by formaldehyde of the NAD–flavin region of the respiratory chain. 6. Concentrations of dicyclohexylcarbodiimide or tributyltin sufficient to abolish ADP-stimulated respiration blocked the dinitrophenol-stimulated adenosine triphosphatase activity, whereas mersalyl and formaldehyde caused only partial inhibition of ATP hydrolysis. 7. When mitochondria were incubated with dinitrophenol and ATP, less than 10% of the total inorganic phosphate liberated was recovered in the mitochondria and no swelling occurred. In the presence of mersalyl or formaldehyde at least 80% of the total inorganic phosphate liberated was retained in the mitochondria and extensive swelling was observed. This swelling was inhibited by oligomycin but not by antimycin or rotenone. 8. The addition of mersalyl to mitochondria swollen by treatment with valinomycin, K+ and phosphate blocked the contraction induced by dinitrophenol and caused an increase in the phosphate content of the mitochondria, but had no effect on the contraction of mitochondria when phosphate was replaced by acetate. 9. It is concluded that mitochondria contain a phosphate-transporter system, which catalyses the movement of phosphate in either direction across the mitochondrial membrane, and that this system is inactivated by organic mercurials and by formaldehyde. Evidence is presented that the phosphate-transporter system is situated in the inner membrane of rat liver mitochondria and is also present in other types of mammalian mitochondria.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2089
Author(s):  
Tatiana A. Fedotcheva ◽  
Olga P. Sheichenko ◽  
Nadezhda I. Fedotcheva

Agrimoniin is a polyphenol from the group of tannins with antioxidant and anticancer activities. It is assumed that the anticancer action of agrimoniin is associated with the activation of mitochondria-dependent apoptosis, but its mitochondrial targets have not been estimated. We examined the direct influence of agrimoniin on different mitochondrial functions, including the induction of the mitochondrial permeability transition pore (MPTP) as the primary mechanism of mitochondria-dependent apoptosis. Agrimoniin was isolated from Agrimonia pilosa Ledeb by multistep purification. The content of agrimoniin in the resulting substance reached 80%, as determined by NMR spectroscopy. The cytotoxic effect of purified agrimoniin was confirmed on the cultures of K562 and HeLa cancer cells by the MTT assay. When tested on isolated rat liver mitochondria, agrimoniin at a low concentration (10 µM) induced the low-amplitude swelling, which was inhibited by the MPTP inhibitors ADP and cyclosporine A, activated the opening of MPTP by calcium ions and stimulated the respiration supported by succinate oxidation. Also, agrimoniin reduced the electron acceptor DCPIP in a concentration-dependent manner and chelated iron ions. Owing to all these properties, agrimoniin can stimulate apoptosis or activate mitochondrial functions, which can be helpful in the prevention and elimination of stagnant pathological states.


1975 ◽  
Vol 228 (2) ◽  
pp. 526-529 ◽  
Author(s):  
DL Sewell ◽  
BS Wostmann ◽  
C Gairola ◽  
MI Aleem

The ADP:O ratios and State 3 (ADP-stimulated) and State 4 (controlled) rates of succinate, beta-hydroxybutyrate, isocitrate, glutamate, pyruvate + malate, alpha-ketoglutarate, and ascorbate + N,N,N',N'-tetramethylphenylenediamine (TMPD) oxidation were examined in liver mitochondria from germ-free and conventional rats of both Lobund Wistar (100-day-old) and Fisher (120-day-old) strains. The State 3 respiration rates of isolated mitochondria from germ-free and conventional rats were comparable except for the rate of succinate oxidation in the Wistar rats, which was significantly lower (approx. 10%). The State 4 respiration rates were generally lower in mitochondria isolated from germ-free Fisher rats (approx. 8%) and significantly lower (approx. 18%) in germ-free Wistar rats. The ADP:O ratios were similar in germ-free and conventional rats. Serum thyroxine concentrations indicated delayed maturation of thyroid function in young germ-free rats, but adult animals had concentrations similar to those found in conventional rats. The results indicate that, although absence of a microflora results in a 20-30% reduction in metabolic rate, the germ-free state has little influence on the functional respiration or oxidative phosphorylation of mitochondria isolated from the liver of the adult rat.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Masami Koushi ◽  
Yasunori Aoyama ◽  
Yoshiko Kamei ◽  
Rei Asakai

Abstract Bisindolylpyrrole at 0.1 μM is cytoprotective in 2% FBS that is counteracted by cyclosporin-A (CsA), an inhibitor of cyclophilin-D (CypD). We hypothesized that the cytoprotective effect might be due to transient mitochondrial permeability transition (tPT). This study tested the hypothesis that bisindolylpyrrole can trigger tPT extensively, thereby leading to cell death under certain conditions. Indeed, CsA-sensitive tPT-mediated apoptosis could be induced by bisindolylpyrrole at > 5 μM in HeLa cells cultured in 0.1% FBS, depending on CypD and VDAC1/2, as shown by siRNA knockdown experiments. Rat liver mitochondria also underwent swelling in response to bisindolylpyrrole, which proceeded at a slower rate than Ca2+-induced swelling, and which was blocked by the VDAC inhibitor tubulin and the ANT inhibitor bongkrekate, indicating the involvement of the ANT-associated, smaller pore. We examined why 0.1% FBS is a prerequisite for apoptosis and found that apoptosis is blocked by PKC activation, which is counteracted by the overexpressed defective PKCε. In mitochondrial suspensions, bisindolylpyrrole triggered CsA-sensitive swelling, which was suppressed selectively by pretreatment with PKCε, but not in the co-presence of tubulin. These data suggest that upon PKC inactivation the cytoprotective compound bisindolylpyrrole can induce prolonged tPT causing apoptosis in a CypD-dependent manner through the VDAC1/2-regulated ANT-associated pore.


1983 ◽  
Vol 212 (3) ◽  
pp. 773-782 ◽  
Author(s):  
B P Hughes ◽  
J H Exton

The effects of micromolar concentrations of Mn2+ on the rat liver mitochondrial Ca2+ cycle were investigated. It was found that the addition of Mn2+ to mitochondria which were cycling 45Ca2+ led to a rapid dose dependent decrease in the concentration of extramitochondrial 45Ca2+ of about 1 nmol/mg of protein. The effect was complete within 30 s, was half maximal with 10 microM Mn2+ and was observed in the presence of 3 mM Mg2+ and 1 mM ATP. It occurred over a broad range of incubation temperatures, pH and mitochondrial Ca2+ loads. It was not observed when either Mg2+ or phosphate was absent from the incubation medium, or in the presence of Ruthenium Red. These findings indicate that micromolar concentrations of Mn2+ stimulate the uptake of Ca2+ by rat liver mitochondria, and provide evidence for an interaction between Mg2+ and Mn2+ in the control of mitochondrial Ca2+ cycling.


2001 ◽  
Vol 95 (3) ◽  
pp. 766-770 ◽  
Author(s):  
Yasuo Tsutsumi ◽  
Shuzo Oshita ◽  
Takashi Kawano ◽  
Hiroshi Kitahata ◽  
Yoshinobu Tomiyama ◽  
...  

Background Accumulating evidence suggests that mitochondrial rather than sarcolemmal adenosine triphosphate-sensitive K+ (K(ATP)) channels may have an important role in the protection of myocardium during ischemia. Because both lidocaine and mexiletine are frequently used antiarrhythmic drugs during myocardial ischemia, it is important to investigate whether they affect mitochondrial K(ATP) channel activities. Methods Male Wistar rats were anesthetized with ether. Single, quiescent ventricular myocytes were dispersed enzymatically. The authors measured flavoprotein fluorescence to evaluate mitochondrial redox state. Lidocaine or mexiletine was applied after administration of diazoxide (25 microM), a selective mitochondrial K(ATP) channel opener. The redox signal was normalized to the baseline flavoprotein fluorescence obtained during exposure to 2,4-dinitrophenol, a protonophore that uncouples respiration from ATP synthesis and collapses the mitochondrial potential. Results Diazoxide-induced oxidation of flavoproteins and the redox changes were inhibited by 5-hydroxydecanoic acid, a selective mitochondrial K(ATP) channel blocker, suggesting that flavoprotein fluorescence can be used as an index of mitochondrial oxidation mediated by mitochondrial K(ATP) channels. Lidocaine (10(-3) to 10 mM) and mexiletine (10(-3) to 10 mM) reduced oxidation of the mitochondrial matrix in a dose-dependent manner with an EC50 of 98+/-63 microM for lidocaine and 107+/-89 microM for mexiletine. Conclusions Both lidocaine and mexiletine reduced flavoprotein fluorescence induced by diazoxide in rat ventricular myocytes, indicating that these antiarrhythmic drugs may produce impairment of mitochondrial oxidation mediated by mitochondrial K(ATP) channels.


1977 ◽  
Vol 166 (1) ◽  
pp. 39-47 ◽  
Author(s):  
S J Gatley ◽  
H S A Sherratt

1. Rat liver mitochondria make hippurate at up to 4 nmol/min per mg of protein. The rate of synthesis supported by oxidation of glutamate with exogenous Pi present is identical with that supported by ATP plus oligomycin. Lower rates were obtained with other respiratory substrates, and when glutamate was used without Pi. 2. A matrix localization for hippurate synthesis is indicated by the latency of benzoyl-CoA synthetase and glycine N-acyltransferase to their extramitochondrial substrates, failure of exogenous benzoyl-CoA to inhibit incorporation of [14C]hippurate and inhibition of hippurate synthesis supported by ATP, but not glutamate, by carboxyatractyloside. 3. The relative activities of the individual enzymes and the mitochondrial content of benzoyl-CoA in the presence and absence of glycine suggest that hippurate synthesis is rate-limited by formation of benzoyl-CoA. 4. The increases in rates of ATP hydrolysis and of O2 consumption on the addition of benzoate and glycine were in good agreement with those required to support hippurate synthesis. The increase in respiration indicates that State-4 respiration [Chance & Williams (1957) Adv. Enzymol 17, 65-134] is not used, with these conditions, for ATP synthesis.


Sign in / Sign up

Export Citation Format

Share Document