scholarly journals Attenuated muscle metaboreflex-induced pressor response during postexercise muscle ischemia in renovascular hypertension

2015 ◽  
Vol 308 (7) ◽  
pp. R650-R658 ◽  
Author(s):  
Marty D. Spranger ◽  
Jasdeep Kaur ◽  
Javier A. Sala-Mercado ◽  
Tiago M. Machado ◽  
Abhinav C. Krishnan ◽  
...  

During dynamic exercise, muscle metaboreflex activation (MMA; induced via partial hindlimb ischemia) markedly increases mean arterial pressure (MAP), and MAP is sustained when the ischemia is maintained following the cessation of exercise (postexercise muscle ischemia, PEMI). We previously reported that the sustained pressor response during PEMI in normal individuals is driven by a sustained increase in cardiac output (CO) with no peripheral vasoconstriction. However, we have recently shown that the rise in CO with MMA is significantly blunted in hypertension (HTN). The mechanisms sustaining the pressor response during PEMI in HTN are unknown. In six chronically instrumented canines, hemodynamic responses were observed during rest, mild exercise (3.2 km/h), MMA, and PEMI in the same animals before and after the induction of HTN [Goldblatt two kidney, one clip (2K1C)]. In controls, MAP, CO and HR increased with MMA (+52 ± 6 mmHg, +2.1 ± 0.3 l/min, and +37 ± 7 beats per minute). After induction of HTN, MAP at rest increased from 97 ± 3 to 130 ± 4 mmHg, and the metaboreflex responses were markedly attenuated (+32 ± 5 mmHg, +0.6 ± 0.2 l/min, and +11 ± 3 bpm). During PEMI in HTN, HR and CO were not sustained, and MAP fell to normal recovery levels. We conclude that the attenuated metaboreflex-induced HR, CO, and MAP responses are not sustained during PEMI in HTN.

2013 ◽  
Vol 304 (8) ◽  
pp. R657-R663 ◽  
Author(s):  
Marty D. Spranger ◽  
Javier A. Sala-Mercado ◽  
Matthew Coutsos ◽  
Jasdeep Kaur ◽  
Doug Stayer ◽  
...  

Muscle metaboreflex activation (MMA) during submaximal dynamic exercise in normal individuals increases mean arterial pressure (MAP) via increases in cardiac output (CO) with little peripheral vasoconstriction. The rise in CO occurs primarily via increases in heart rate (HR) with maintained or slightly increased stroke volume. When the reflex is sustained during recovery (postexercise muscle ischemia, PEMI), HR declines yet MAP remains elevated. The role of CO in mediating the pressor response during PEMI is controversial. In seven chronically instrumented canines, steady-state values with MMA during mild exercise (3.2 km/h) were observed by reducing hindlimb blood flow by ∼60% for 3–5 min. MMA during exercise was followed by 60 s of PEMI. Control experiments consisted of normal exercise and recovery. MMA during exercise increased MAP, HR, and CO by 55.3 ± 4.9 mmHg, 42.5 ± 6.9 beats/min, and 2.5 ± 0.4 l/min, respectively. During sustained MMA via PEMI, MAP remained elevated and CO remained well above the normal recovery levels. Neither MMA during dynamic exercise nor during PEMI significantly affected peripheral vascular conductance. We conclude that the sustained increase in MAP during PEMI is driven by a sustained increase in CO not peripheral vasoconstriction.


2015 ◽  
Vol 308 (5) ◽  
pp. H524-H529 ◽  
Author(s):  
Jasdeep Kaur ◽  
Marty D. Spranger ◽  
Robert L. Hammond ◽  
Abhinav C. Krishnan ◽  
Alberto Alvarez ◽  
...  

Muscle metaboreflex-induced increases in mean arterial pressure (MAP) during submaximal dynamic exercise are mediated principally by increases in cardiac output. To what extent, if any, the peripheral vasculature contributes to this rise in MAP is debatable. In several studies, we observed that in response to muscle metaboreflex activation (MMA; induced by partial hindlimb ischemia) a small but significant increase in vascular conductance occurred within the nonischemic areas (calculated as cardiac output minus hindlimb blood flow and termed nonischemic vascular conductance; NIVC). We hypothesized that these increases in NIVC may stem from a metaboreflex-induced release of epinephrine, resulting in β2-mediated dilation. We measured NIVC and arterial plasma epinephrine levels in chronically instrumented dogs during rest, mild exercise (3.2 km/h), and MMA before and after β-blockade (propranolol; 2 mg/kg), α1-blockade (prazosin; 50 μg/kg), and α1 + β-blockade. Both epinephrine and NIVC increased significantly from exercise to MMA: 81.9 ± 18.6 to 141.3 ± 22.8 pg/ml and 33.8 ± 1.5 to 37.6 ± 1.6 ml·min−1·mmHg−1, respectively. These metaboreflex-induced increases in NIVC were abolished after β-blockade (27.6 ± 1.8 to 27.5 ± 1.7 ml·min−1·mmHg−1) and potentiated after α1-blockade (36.6 ± 2.0 to 49.7 ± 2.9 ml·min−1·mmHg−1), while α1 + β-blockade also abolished any vasodilation (33.7 ± 2.9 to 30.4 ± 1.9 ml·min−1·mmHg−1). We conclude that MMA during mild dynamic exercise induces epinephrine release causing β2-mediated vasodilation.


2005 ◽  
Vol 289 (6) ◽  
pp. H2416-H2423 ◽  
Author(s):  
Jong-Kyung Kim ◽  
Javier A. Sala-Mercado ◽  
Robert L. Hammond ◽  
Jaime Rodriguez ◽  
Tadeusz J. Scislo ◽  
...  

Previous studies have shown that heart failure (HF) or sinoaortic denervation (SAD) alters the strength and mechanisms of the muscle metaboreflex during dynamic exercise. However, it is still unknown to what extent SAD may modify the muscle metaboreflex in HF. Therefore, we quantified the contribution of cardiac output (CO) and peripheral vasoconstriction to metaboreflex-mediated increases in mean arterial blood pressure (MAP) in conscious, chronically instrumented dogs before and after induction of HF in both barointact and SAD conditions during mild and moderate exercise. The muscle metaboreflex was activated via partial reductions in hindlimb blood flow. After SAD, the metaboreflex pressor responses were significantly higher with respect to the barointact condition despite lower CO responses. The pressor response was significantly lower in HF after SAD but still higher than that of HF in the barointact condition. During control experiments in the barointact condition, total vascular conductance summed from all beds except the hindlimbs did not change with muscle metaboreflex activation, whereas in the SAD condition both before and after induction of HF significant vasoconstriction occurred. We conclude that SAD substantially increased the contribution of peripheral vasoconstriction to metaboreflex-induced increases in MAP, whereas in HF SAD did not markedly alter the patterns of the reflex responses, likely reflecting that in HF the ability of the arterial baroreflex to buffer metaboreflex responses is impaired.


2005 ◽  
Vol 288 (3) ◽  
pp. H1374-H1380 ◽  
Author(s):  
Jong-Kyung Kim ◽  
Javier A. Sala-Mercado ◽  
Jaime Rodriguez ◽  
Tadeusz J. Scislo ◽  
Donal S. O'Leary

Previous studies showed that the arterial baroreflex opposes the pressor response mediated by muscle metaboreflex activation during mild dynamic exercise. However, no studies have investigated the mechanisms contributing to metaboreflex-mediated pressor responses during dynamic exercise after arterial baroreceptor denervation. Therefore, we investigated the contribution of cardiac output (CO) and peripheral vasoconstriction in mediating the pressor response to graded reductions in hindlimb perfusion in conscious, chronically instrumented dogs before and after sinoaortic denervation (SAD) during mild and moderate exercise. In control experiments, the metaboreflex pressor responses were mediated via increases in CO. After SAD, the metaboreflex pressor responses were significantly greater and significantly smaller increases in CO occurred. During control experiments, nonischemic vascular conductance (NIVC) did not change with muscle metaboreflex activation, whereas after SAD NIVC significantly decreased with metaboreflex activation; thus SAD shifted the mechanisms of the muscle metaboreflex from mainly increases in CO to combined cardiac and peripheral vasoconstrictor responses. We conclude that the major mechanism by which the arterial baroreflex buffers the muscle metaboreflex is inhibition of metaboreflex-mediated peripheral vasoconstriction.


2004 ◽  
Vol 287 (4) ◽  
pp. H1682-H1688 ◽  
Author(s):  
Jong-Kyung Kim ◽  
Robert A. Augustyniak ◽  
Javier A. Sala-Mercado ◽  
Robert L. Hammond ◽  
Eric J. Ansorge ◽  
...  

Arterial baroreflex function is well preserved during dynamic exercise in normal subjects. In subjects with heart failure (HF), arterial baroreflex ability to regulate blood pressure is impaired at rest. However, whether exercise modifies the strength and mechanisms of baroreflex responses in HF is unknown. Therefore, we investigated the relative roles of cardiac output and peripheral vasoconstriction in eliciting the pressor response to bilateral carotid occlusion (BCO) in conscious, chronically instrumented dogs at rest and during treadmill exercise ranging from mild to heavy workloads. Experiments were performed in the same animals before and after rapid ventricular pacing-induced HF. At rest, the pressor response to BCO was significantly attenuated in HF (33.3 ± 1.2 vs. 18.7 ± 2.7 mmHg), and this difference persisted during exercise in part due to lower cardiac output responses in HF. However, both before and after the induction of HF, the contribution of vasoconstriction in active skeletal muscle toward the pressor response became progressively greater as workload increased. We conclude that, although there is an impaired ability of the baroreflex to regulate arterial pressure at rest and during exercise in HF, vasoconstriction in active skeletal muscle becomes progressively more important in mediating the baroreflex pressor response as workload increases with a pattern similar to that observed in normal subjects.


2007 ◽  
Vol 292 (5) ◽  
pp. H2159-H2166 ◽  
Author(s):  
Javier A. Sala-Mercado ◽  
Robert L. Hammond ◽  
Jong-Kyung Kim ◽  
Phillip J. McDonald ◽  
Larry W. Stephenson ◽  
...  

Underperfusion of active skeletal muscle elicits a reflex pressor response termed the muscle metaboreflex (MMR). In normal dogs during mild exercise, MMR activation causes large increases in cardiac output (CO) and mean arterial pressure (MAP); however, in heart failure (HF) although MAP increases, the rise in CO is virtually abolished, which may be due to an impaired ability to increase left ventricular contractility (LVC). The objective of the present study was to determine whether the increases in LVC seen with MMR activation during dynamic exercise in normal animals are abolished in HF. Conscious dogs were chronically instrumented to measure CO, MAP, and left ventricular (LV) pressure and volume. LVC was calculated from pressure-volume loop analysis [LV maximal elastance ( Emax) and preload-recruitable stroke work (PRSW)] at rest and during mild and moderate exercise under free-flow conditions and with MMR activation (via partial occlusion of hindlimb blood flow) before and after rapid ventricular pacing-induced HF. In control experiments, MMR activation at both workloads [mild exercise (3.2 km/h) and moderate exercise (6.4 km/h at 10% grade)] significantly increased CO, Emax, and PRSW. In contrast, after HF was induced, CO, Emax, and PRSW were significantly lower at rest. Although CO increased significantly from rest to exercise, Emax and PRSW did not change. In addition, MMR activation caused no significant change in CO, Emax, or PRSW at either workload. We conclude that MMR causes large increases in LVC in normal animals but that this ability is abolished in HF.


2010 ◽  
Vol 298 (1) ◽  
pp. H245-H250 ◽  
Author(s):  
Masashi J. Ichinose ◽  
Javier A. Sala-Mercado ◽  
Matthew Coutsos ◽  
ZhenHua Li ◽  
Tomoko K. Ichinose ◽  
...  

Muscle metaboreflex activation during submaximal dynamic exercise in normal subjects elicits a pressor response primarily due to increased cardiac output (CO). However, when the ability to increase CO is limited, such as in heart failure or during maximal exercise, the muscle metaboreflex-induced increases in arterial pressure occur via peripheral vasoconstriction. How the mechanisms of this pressor response are altered is unknown. We tested the hypothesis that this change in metaboreflex function is dependent on the level of CO. The muscle metaboreflex was activated in dogs during mild dynamic exercise (3.2 km/h) via a partial reduction of hindlimb blood flow. Muscle metaboreflex activation increased CO and arterial pressure, whereas vascular conductance of all areas other than the hindlimbs did not change. CO was then reduced to the same level observed during exercise before the muscle metaboreflex activation via partial occlusion of the inferior and superior vena cavae. Arterial pressure dropped rapidly with the reduction in CO but, subsequently, nearly completely recovered. With the removal of the muscle metaboreflex-induced rise in CO, substantial peripheral vasoconstriction occurred that maintained arterial pressure at the same levels as before CO reduction. Therefore, the muscle metaboreflex function is nearly instantaneously shifted from increased CO to increased vasoconstriction when the muscle metaboreflex-induced rise in CO is removed. We conclude that whether vasoconstriction occurs with muscle metaboreflex depends on whether CO rises.


1983 ◽  
Vol 64 (6) ◽  
pp. 593-599 ◽  
Author(s):  
Steven F. Lewis ◽  
W. Fred Taylor ◽  
Bruce C. Bastian ◽  
Robert M. Graham ◽  
William A. Pettinger ◽  
...  

1. Six healthy men performed static and dynamic handgrip to local muscular fatigue in approximately 6 min under control conditions, i.e. without drugs and after combined para-sympathetic and β-adrenergic blockade with atropine and metoprolol. 2. From rest to exercise at fatigue, systolic, diastolic and mean arterial pressures increased by 32 ± 4 and 39 ± 3 mmHg, 24 ± 3 and 26 ± 4 mmHg, and 26 ± 3 and 30 ± 3 mmHg respectively for static and dynamic handgrip. There were no significant differences between the pressor responses for the two modes of contraction. Cardiac output increased significantly only during dynamic exercise. Total peripheral resistance increased by 2.3 ± 1.0 units for static handgrip (P < 0.05) and by 0.7 ± 0.8 unit (P > 0.05) for dynamic handgrip. Autonomic blockade abolished the heart rate response to both static and dynamic handgrip. For both modes of contraction the systolic arterial pressure responses were 9–12 mmHg lower (P < 0.05) after autonomic blockade, but the diastolic and mean pressure responses were not significantly affected. A significant increase in cardiac output persisted during dynamic exercise. The increase in peripheral resistance during static exercise tended to be greater after blockade. Plasma noradrenaline and adrenaline levels showed only minor elevations in response to static and dynamic handgrip and were not changed by autonomic blockade. 3. These data indicate that when performed to a common end-point with identical small muscle groups static and dynamic exercise produce an equally large pressor response, which is only slightly attenuated by autonomic blockade.


2013 ◽  
Vol 304 (7) ◽  
pp. H1029-H1037 ◽  
Author(s):  
Matthew Coutsos ◽  
Javier A. Sala-Mercado ◽  
Masashi Ichinose ◽  
ZhenHua Li ◽  
Elizabeth J. Dawe ◽  
...  

Muscle metaboreflex activation (MMA) during dynamic exercise increases cardiac work and myocardial O2 demand via increases in heart rate, ventricular contractility, and afterload. This increase in cardiac work should lead to metabolic coronary vasodilation; however, no change in coronary vascular conductance occurs. This indicates that the MMA-induced increase in sympathetic activity to the heart, which raises heart rate, ventricular contractility, and cardiac output, also elicits coronary vasoconstriction. In heart failure, cardiac output does not increase with MMA presumably due to impaired ability to improve left ventricular contractility. In this setting actual coronary vasoconstriction is observed. We tested whether this coronary vasoconstriction could explain, in part, the reduced ability to increase cardiac performance during MMA. In conscious, chronically instrumented dogs before and after pacing-induced heart failure, MMA responses during mild exercise were observed before and after α1-adrenergic blockade (prazosin 20–50 μg/kg). During MMA, the increases in coronary vascular conductance, coronary blood flow, maximal rate of left ventricular pressure change, and cardiac output were significantly greater after α1-adrenergic blockade. We conclude that in subjects with heart failure, coronary vasoconstriction during MMA limits the ability to increase left ventricular contractility.


2008 ◽  
Vol 294 (3) ◽  
pp. H1310-H1316 ◽  
Author(s):  
Masashi Ichinose ◽  
Javier A. Sala-Mercado ◽  
Donal S. O'Leary ◽  
Robert L. Hammond ◽  
Matthew Coutsos ◽  
...  

We have previously shown that spontaneous baroreflex-induced changes in heart rate (HR) do not always translate into changes in cardiac output (CO) at rest. We have also shown that heart failure (HF) decreases this linkage between changes in HR and CO. Whether dynamic exercise and muscle metaboreflex activation (via imposed reductions in hindlimb blood flow) further alter this translation in normal and HF conditions is unknown. We examined these questions using conscious, chronically instrumented dogs before and after pacing-induced HF during mild and moderate dynamic exercise with and without muscle metaboreflex activation. We measured left ventricular systolic pressure (LVSP), CO, and HR and analyzed the spontaneous HR-LVSP and CO-LVSP relationships. In normal animals, mild exercise significantly decreased HR-LVSP (−3.08 ± 0.5 vs. −5.14 ± 0.6 beats·min−1·mmHg−1; P < 0.05) and CO-LVSP (−134.74 ± 24.5 vs. −208.6 ± 22.2 ml·min−1·mmHg−1; P < 0.05). Moderate exercise further decreased both and, in addition, significantly reduced HR-CO translation (25.9 ± 2.8% vs. 52.3 ± 4.2%; P < 0.05). Muscle metaboreflex activation at both workloads decreased HR-LVSP, whereas it had no significant effect on CO-LVSP and the HR-CO translation. HF significantly decreased HR-LVSP, CO-LVSP, and the HR-CO translation in all situations. We conclude that spontaneous baroreflex HR responses do not always cause changes in CO during exercise. Moreover, muscle metaboreflex activation during mild and moderate dynamic exercise reduces this coupling. In addition, in HF the HR-CO translation also significantly decreases during both workloads and decreases even further with muscle metaboreflex activation.


Sign in / Sign up

Export Citation Format

Share Document