exercise muscle
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 33)

H-INDEX

35
(FIVE YEARS 4)

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Camila Taise Tavares ◽  
Alline Cristina Schüncke Lobo ◽  
Cláudia Choma Bettega Almeida ◽  
Adriano Eduardo Lima-Silva ◽  
Sila Mary Rodrigues Ferreira

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 4013
Author(s):  
Hugo J. Bello ◽  
Alberto Caballero-García ◽  
Daniel Pérez-Valdecantos ◽  
Enrique Roche ◽  
David C. Noriega ◽  
...  

Vitamin D is a key micronutrient modulating function and health in skeletal muscle. Therefore, we sought to systematically review the role of vitamin D in muscle recovery. A search in different databases (PubMed/MEDLINE, WOS, Google Scholar, and Scopus) was carried out following PRISMA® and PICOS. The search period was from inception to April 2020. Changes in post-exercise muscle damage were quantified comparing experimental group vs. placebo in each study by using number of participants, standardized mean difference (SMD), and standard error of the SMD. Hedges’s g was used to calculate the SMDs for each study group and biased by the inverse of variance that allows calculating an overall effect and the 95% confidence interval (CI). The net vitamin D supplementation effect was calculated by subtracting the placebo SMD from SMD of the experimental group. The DerSimonian and Laird method was used as a random effect model, taking into account that the effect of vitamin D on muscular damage may vary according to the dose administered and additional moderators. Six studies were selected. In conclusion, regarding circulating levels of muscle biomarkers and additional limitations of the studies, it cannot be concluded that vitamin D supplementation exerts an effect in post-exercise muscle recovery. Likely, the anti-inflammatory action of vitamin D is quicker than the recovery of tissue structure and function. This aspect is pending verification in future research.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 80-81
Author(s):  
Tanja Hess ◽  
Emily Kent ◽  
Renan Regatieri Casagrande ◽  
Christine Levihn ◽  
Grace Romo ◽  
...  

Abstract Antioxidant supplementation has been shown to decrease post exercise oxidative stress but can lead to decreased post-exercise muscle protein synthesis. The objective of this study was to compare the effects of the supplementation with a control feed with low antioxidant content (CONT) to a high antioxidant feed (AO), versus a high antioxidant and branched chain amino acid feed (BCAO) on post-exercise protein synthesis and oxidative stress. Our hypothesis is that supplementing AO with BCAO will reduce oxidative stress without hindering muscle protein synthesis. Eighteen mixed breed conditioned polo horses were assigned to one of the three treatments. All horses consumed CONT for 30 days and were then submitted to a lactate threshold test (LT). One hour after this and all LT, each group was assigned and given their treatments. LT were done at 15 and 30 days of supplementation. Blood was collected before, two and four hours after LT, and analyzed for oxidative stress based on glutathione peroxidase, superoxide dismutase and malondialdehyde concentrations by ELISA. Muscle biopsies were taken before and 4 hours after LT and analyzed for the expression of protein synthesis by RT-PCR. Results were analyzed in a mixed model by ANOVA and compared by LSM. A reduction of oxidative stress was found over time (P < 0.050) with no treatment effect (P >0.50). An upregulation of protein synthesis after exercise was found for muscle primers CD36, CPT1, DK4, MyF5, and Myogenin (P < 0.050). There was a treatment by time effect for MyoD (P = 0.027), where AO was upregulated the most after exercise compared to BCAO and CONT. DK4 had a treatment by time effect trend (P = 0.073), where AO and BCAO were upregulated and CONT was unchanged after exercise. This study demonstrated post exercise muscle synthesis with no advantage of AO plus BCAO compared to AO.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3335
Author(s):  
Laís Monteiro Rodrigues Loureiro ◽  
Eugênio dos Santos dos Santos Neto ◽  
Guilherme Eckhardt Molina ◽  
Angélica Amorim Amato ◽  
Sandra Fernandes Arruda ◽  
...  

Coffee is one of the most widely consumed beverages worldwide and caffeine is known to improve performance in physical exercise. Some substances in coffee have a positive effect on glucose metabolism and are promising for post-exercise muscle glycogen recovery. We investigated the effect of a coffee beverage after exhaustive exercise on muscle glycogen resynthesis, glycogen synthase activity and glycemic and insulinemic response in a double-blind, crossover, randomized clinical trial. Fourteen endurance-trained men performed an exhaustive cycle ergometer exercise to deplete muscle glycogen. The following morning, participants completed a second cycling protocol followed by a 4-h recovery, during which they received either test beverage (coffee + milk) or control (milk) and a breakfast meal, with a simple randomization. Blood samples and muscle biopsies were collected at the beginning and by the end of recovery. Eleven participants were included in data analysis (age: 39.0 ± 6.0 years; BMI: 24.0 ± 2.3 kg/m2; VO2max: 59.9 ± 8.3 mL·kg−1·min−1; PPO: 346 ± 39 W). The consumption of coffee + milk resulted in greater muscle glycogen recovery (102.56 ± 18.75 vs. 40.54 ± 18.74 mmol·kg dw−1; p = 0.01; d = 0.94) and greater glucose (p = 0.02; d = 0.83) and insulin (p = 0.03; d = 0.76) total area under the curve compared with control. The addition of coffee to a beverage with adequate amounts of carbohydrates increased muscle glycogen resynthesis and the glycemic and insulinemic response during the 4-h recovery after exhaustive cycling exercise.


Author(s):  
Nicola Giovanelli ◽  
Mirco Floreani ◽  
Filippo Vaccari ◽  
Stefano Lazzer

Downhill running has an important effect on performance in trail running competitions, but it is less studied than uphill running. The purpose of this study was to investigate the cardiorespiratory response during 15 minutes of downhill running (DR) and to evaluate the neuromuscular consequences in a group of trail runners. Before and after a 15-min DR trial (slope: −25%) at ~60% of maximal oxygen consumption (V̇O2max), we evaluated maximal voluntary contraction torque (MVCt) and muscle contractility in a group of seventeen trail running athletes. Additionally, during the DR trial, we measured V̇O2 and heart rate (HR). V̇O2 and HR increased as a function of time, reaching +19.8 ± 15.9% (p < 0.001; ES: 0.49, medium) and +15.3 ± 9.9% (p < 0.001; ES: 0.55, large), respectively, in the last minute of DR. Post-exercise, the MVCt decreased (−22.2 ± 12.0%; p < 0.001; ES = 0.55, large) with respect to the pre-exercise value. All the parameters related to muscle contractility were impaired after DR: the torque evoked by a potentiated high frequency doublet decreased (−28.5 ± 12.7%; p < 0.001; ES: 0.61, large), as did the torque response from the single-pulse stimulation (St, −41.6 ± 13.6%; p < 0.001; ES: 0.70, large) and the M-wave (−11.8 ± 12.1%; p < 0.001; ES: 0.22, small). We found that after 15 min of DR, athletes had a decreased MVCt, which was ascribed mainly to peripheral rather than central alterations. Additionally, during low-intensity DR exercise, muscle fatigue and exercise-induced muscle damage may contribute to the development of O2 and HR drift.


2021 ◽  
Vol 101 ◽  
pp. 103455
Author(s):  
Jessica K. Suagee-Bedore ◽  
Yeting Shen ◽  
Shea Porr ◽  
Ivan D. Girard ◽  
Karen Bennett-Wimbush ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Javier Sanchez-Sanchez ◽  
Jose Luis Felipe ◽  
Antonio Hernandez-Martin ◽  
David Viejo-Romero ◽  
Vicente Javier Clemente-Suarez ◽  
...  

AbstractThis study aimed to analyse the influence of the FIFA Quality PRO certification of artificial turf pitches on the physical, physiological performance and muscle damage in soccer players. Fifteen healthy male players (21.2 ± 1.4 years; 178.2 ± 4.3 cm; 79.1 ± 8.3 kg) from a university football team were selected to participate in the research. Mechanical properties related to surface–player interaction were assessed on the two surfaces selected for this study. A randomized design was used and the players performed the Ball-sport Endurance and Sprint Test (BEAST90) on the different artificial turf fields. Average time of the 20 m sprints was longer on the FIFA Quality Pro surface than on the non-certified pitch (+ 0.13 s; p < 0.05; CI 95% − 0.01 to 0.27; ES: 0.305). The players’ perceived effort was higher in the first (+ 2.64; p < 0.05; CI 95% 0.92 to 4.35; ES: 1.421) and the second half (+ 1.35; p < 0.05; CI 95% − 0.02 to 2.72; ES: 0.637) of the test on the FIFA Quality Pro field. Comparative analysis between surfaces showed no significant differences in the time spent in each of the heart rate zones and higher concentrations of CK (+ 196.58; p > 0.05; CI 95% 66.54 to 326.61; ES: 1.645) were evidenced in the non-certified pitch surface. In response to a simulated match protocol, markers of post-exercise muscle damage may be reduced on accredited artificial turf fields. These insights can provide the opportunity to maximize the efficiency of training sessions and reduce the risk of injury during the season.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rocio Zapata-Bustos ◽  
Jean Finlayson ◽  
Paul R. Langlais ◽  
Dawn K. Coletta ◽  
Moulun Luo ◽  
...  

PurposeInsulin resistant muscle is resistant to gene expression changes induced by acute exercise. This study was undertaken to identify transcription factors that differentially respond to exercise in insulin resistance. Candidate transcription factors were identified from analysis of 5′-untranslated regions (5′-UTRs) of exercise responsive genes and from analysis of the 5′-UTRs of genes coding for proteins that differ in abundance in insulin resistance.Research Design and MethodsTwenty participants took part in this study. Insulin sensitivity was assessed by an euglycemic clamp. Participants were matched for aerobic capacity and performed a single 48 min bout of exercise with sets at 70 and 90% of maximum heart rate. Muscle biopsies were obtained at resting conditions, 30 min and 24 h after exercise. Global proteomics analysis identified differentially abundant proteins in muscle. The 5′-UTRs of genes coding for significant proteins were subjected to transcription factor enrichment analysis to identify candidate transcription factors. Q-rt-PCR to determine expression of candidate transcription factors was performed on RNA from resting and post-exercise muscle biopsies; immunoblots quantified protein abundance.ResultsProteins involved in mitochondrial function, protein targeting and translation, and metabolism were among those significantly different between lean and obese groups. Transcription factor enrichment analysis of genes coding for these proteins revealed new candidate transcription factors to be evaluated along the previously identified factors. Q-rt-PCR analysis of RNA and immunoblot analysis from pre- and post-exercise muscle biopsies revealed several transcription and growth factors that had altered responses to exercise in insulin resistant participants. A significant increase (EGR3 and CTGF) and decrease (RELA and ATF2) in the mRNA expression of transcription and growth factors was found after exercise in the lean group, but not in the obese participants.ConclusionsThese results confirm findings of an association between insulin sensitivity and transcription factor mRNA response to exercise and show that obesity also may be a sufficient prerequisite for exercise resistance. Analysis of the muscle proteome together with determination of effects of exercise on expression of transcription factors suggests that abnormal responses of transcription factors to exercise may be responsible for differences in protein abundances in insulin resistant muscle.


Sign in / Sign up

Export Citation Format

Share Document