Characterization of an esophagocardiovascular reflex in the rat

1997 ◽  
Vol 272 (6) ◽  
pp. R1783-R1791 ◽  
Author(s):  
C. W. Loomis ◽  
D. Yao ◽  
D. Bieger

A cardiovascular reflex evoked by esophageal distension (ECR) in urethan-anesthetized male Sprague-Dawley rats was studied to 1) determine whether the relevant sensory input from the esophagus is conveyed by vagal and/or spinal afferents and 2) evaluate the effects and sites of action of antinociceptive agents. Esophageal distension evoked a rise in arterial blood pressure and heart rate that increased linearly with the log of inflation pressure (25-150 mmHg). Distension (100 mmHg for 20 s) of the lower esophagus was a more effective stimulus than distension of the upper esophagus. The ECR was attenuated by unilateral and abolished by bilateral cervical vagotomy and dose dependently inhibited by morphine (1.0-4.0 mg/kg iv) or by intrathecal (T4-T5) administration of dexmedetomidine (DX, 0.05-0.5 microgram), but not by intrathecal (T4-T5) morphine (4-16 micrograms) or intrathecal (L1-L2) or intravenous DX (0.05-0.5 microgram). The ECR was also inhibited by capsaicin and by the topical administration of DX or morphine to the solitary complex. The pressor response persisted after intravenous pancuronium, scopolamine, and methscopolamine. The ECR circuit appears to consist of vagal afferents, efferent sympathetic preganglionic pathways originating in the thoracic spinal cord, and bulbospinal neurons yet to be identified. This reflex fulfills some criteria of a nociceptive event, but this interpretation requires further investigation.

1992 ◽  
Vol 68 (4) ◽  
pp. 1027-1045 ◽  
Author(s):  
A. Randich ◽  
C. L. Thurston ◽  
P. S. Ludwig ◽  
J. D. Robertson ◽  
C. Rasmussen

1. Intravenous administration of 1.0 mg/kg of morphine produces inhibition of the nociceptive tail-flick (TF) reflex, hypotension, and bradycardia in the pentobarbital-anesthetized rat. The present experiments examined peripheral, spinal, and supraspinal relays for inhibition of the TF reflex and cardiovascular responses produced by morphine (1.0 mg/kg iv) in the pentobarbital-anesthetized rat using 1) bilateral cervical vagotomy, 2) spinal cold block or mechanical lesions of the dorsolateral funiculi (DLFs), or 3) nonselective local anesthesia or soma-selective lesions of specific CNS regions. Intravenous morphine-induced inhibition of responses of unidentified, ascending, and spinothalamic tract (STT) lumbosacral spinal dorsal horn neurons to noxious heating of the hindpaw were also examined in intact and bilateral cervical vagotomized rats. 2. Bilateral cervical vagotomy significantly attenuated inhibition of the TF reflex and bradycardia produced by intravenous administration of morphine. Bilateral cervical vagogtomy changed the normal depressor response produced by morphine into a sustained pressor response. Inhibition of the TF reflex in intact rats was not due to changes in tail temperature. 3. Spinal cold block significantly attenuated inhibition of the TF reflex, the depressor response, and the bradycardia produced by intravenous administration of morphine. However, bilateral mechanical transections of the DLFs failed to significantly affect either inhibition of the TF reflex or cardiovascular responses produced by this dose of intravenous morphine. 4. Microinjection of either lidocaine or ibotenic acid into the nuclei tracti solitarii (NTS), rostromedial medulla (RMM), or ventrolateral pontine tegmentum (VLPT) attenuated morphine-induced inhibition of the TF reflex. Similar microinjections into either the periaqueductal gray (PAG) or the dorsolateral pons (DLP) failed to affect morphine-induced inhibition of the TF reflex. 5. Microinjection of either lidocaine or ibotenic acid into the NTS, RMM, VLPT, DLP, or rostral ventrolateral medulla (RVLM) attenuated the depressor response produced by morphine, although baseline arterial blood pressure (ABP) was affected by ibotenic acid microinjections in the DLP. In all these cases, the microinjections failed to reveal a sustained pressor response as was observed with bilateral cervical vagotomy. Similar microinjections into the PAG failed to affect the depressor response produced by morphine. 6. The lidocaine and ibotenic acid microinjection treatments also showed that the bradycardic response produced by morphine depends on the integrity of the NTS, RMM, RVLM, and possibly the DLP, but not the PAG or VLPT.(ABSTRACT TRUNCATED AT 400 WORDS)


1984 ◽  
Vol 57 (5) ◽  
pp. 1417-1421 ◽  
Author(s):  
D. A. Daskalopoulos ◽  
J. T. Shepherd ◽  
S. C. Walgenbach

To examine the role of cardiopulmonary receptors in arterial blood pressure regulation during and after exercise, conscious dogs with chronic sinoaortic denervation were subjected to 12 min of light exercise and 12 min of exercise that increased in severity every 3 min. Hemodynamic measurements were made before and after interruption of cardiopulmonary afferents by bilateral cervical vagotomy. During both exercise protocols, after an initial transient decrease, the arterial blood pressure remained close to resting values before and after vagotomy. On cessation of the graded exercise, the arterial blood pressure did not change before, but a rapid and sustained increase in pressure occurred after vagotomy. At the time of this increase the cardiac output and heart rate were returning rapidly to the resting level. The study demonstrates that in the chronic absence of arterial baroreflexes, vagal afferents prevent a rise in arterial blood pressure after vigorous exercise presumably by the action of cardiopulmonary receptors causing a rapid dilatation of systemic resistance vessels.


1998 ◽  
Vol 275 (6) ◽  
pp. H2025-H2035 ◽  
Author(s):  
Liang-Wu Fu ◽  
John C. Longhurst

Phenylbiguanide (PBG), a 5-HT3 (serotonin) receptor agonist, has been used in many studies as a “selective” agonist to elicit reflex bradycardia and hypotension through activation of cardiac and pulmonary vagal afferents. Because we have shown that endogenous 5-HT stimulates ischemically sensitive abdominal sympathetic afferents through 5-HT3 receptors, we investigated the possibility that left ventricular (LV) and intra-arterial administration of PBG may evoke a competing reflex response by increasing the activity of sympathetic visceral afferents in anesthetized cats. Mean arterial pressure (MAP) and heart rate (HR) were monitored. When both vagal and sympathetic afferents were intact, PBG (40 μg/kg, injected into the LV) significantly decreased MAP and HR in 8 of 10 cats but increased MAP in the remaining 2 cats. After bilateral cervical vagotomy, LV PBG significantly increased MAP. PBG (40 μg/kg ia) significantly increased MAP and HR, whereas intravenous PBG significantly decreased MAP and HR ( n = 10 cats). Furthermore, the pressor response to PBG (40 μg /kg ia) was reduced by 68% ( P < 0.05; n = 4 cats) by celiac and mesenteric ganglionectomies. In studies of single-unit abdominal sympathetic afferents, intra-arterial but not intravenous PBG (40 μg/kg) significantly increased activity of 10 ischemically sensitive afferents but not ischemically insensitive afferents. Blockade of 5-HT3 receptors with tropisetron (200 μg/kg iv) eliminated the response of the afferents and the pressor response to PBG. These data indicate that PBG administered into the LV usually, but not always, evokes a depressor response that is converted to a pressor response following cervical vagotomy. Also, intra-arterial PBG induces a pressor response by stimulating 5-HT3receptors largely associated with ischemically sensitive abdominal sympathetic afferents.


1997 ◽  
Vol 273 (3) ◽  
pp. R1147-R1157 ◽  
Author(s):  
T. Hummel ◽  
J. N. Sengupta ◽  
S. T. Meller ◽  
G. F. Gebhart

The aim of the study was to investigate the information processing in the thoracic spinal cord (T2-4) after chemical irritation of the lower airways. Experiments were performed in pentobarbital sodium-anesthetized and pancuronium-paralyzed male Sprague-Dawley rats. Balloon distension of the esophagus was used as the search stimulus. Ammonia and smoke were applied by means of a tracheal cannula; they produced excitatory, inhibitory, and biphasic responses in a concentration-related manner (ammonia 39/39; smoke 23/ 39). Inhaled irritant-responsive neurons exhibited a number of similarities that have been described for neurons responding to stimulation of other thoracic viscera. These similarities relate to the distribution of neurons in the deeper laminae of the thoracic spinal cord, the relatively small number of neurons receiving input from the lower airways, the extensive convergent input from the skin and other thoracic viscera, and the pattern of responses. In addition, both stimulus-induced responses and spontaneous activity are subject to modulation from supraspinal sites. On the basis of responses to inhaled irritants after either spinal cord or vagus nerve block/transection, these T2-4 spinal neurons are likely to receive spinal afferent input that is modulated by vagal-brain stem input.


1986 ◽  
Vol 60 (2) ◽  
pp. 479-485 ◽  
Author(s):  
Y. Jammes ◽  
M. J. Mathiot ◽  
S. Delpierre ◽  
C. Grimaud

The interactions between vagal and spinal afferents in the control of eupneic diaphragmatic activity were studied in two groups of cats anesthetized either with pentobarbital sodium (SPB) or with ethyl carbamate-alpha-chloralose (ECC), which enhanced spinal reflexes. Under both conditions of anesthesia two experimental protocols were performed: 1) bilateral cervical vagotomy followed by spinal section at C8 level or 2) spinal section followed by vagotomy. Changes in integrated diaphragmatic activity (Edi) were studied during eupneic ventilation and tracheal occlusion at end expiration. Vagotomy always significantly increased the amplitude of Edi during eupnea (SPB + 30%; ECC + 15%) and prolonged its duration (Tdi) (SPB + 110%; ECC + 75%) but did not modify the overall shape of the Edi vs. time relationship. Spinal section induced reverse changes in the amplitude of Edi, whether vagal afferents were present or suppressed and modified the shape of the Edi wave, but did not significantly modify Tdi. These results indicate that both vagal and spinal afferents may participate in the control of eupneic inspiration but exert different and interdependent influences on the recruitment and firing time of phrenic motoneurons. In addition, Tdi measured during tracheal occlusion (Todi) was markedly prolonged under ECC anesthesia. In this situation spinal section reduced Todi, which became close to the values obtained in intact or spinal cats under SPB anesthesia. Thus the response to tracheal occlusion at end expiration cannot be interpreted as resulting from the sole suppression of volume related vagal information.


2011 ◽  
Vol 301 (5) ◽  
pp. R1486-R1494 ◽  
Author(s):  
Branimir Zogovic ◽  
Paul M. Pilowsky

Bombesin, a 14 amino-acid peptide, is pressor when administered intravenously in rat and pressor and sympathoexcitatory when applied intracerebroventricularly. To determine the spinal effects of bombesin, the peptide was administered acutely in the intrathecal space at around thoracic spinal cord level six of urethane-anesthetized, paralyzed, and bilaterally vagotomized rats. Blood pressure, heart rate, splanchnic sympathetic nerve activity (sSNA), phrenic nerve activity, and end-tidal CO2 were monitored to evaluate changes in the cardiorespiratory systems. Bombesin elicited a long-lasting excitation of sSNA associated with an increase in blood pressure and tachycardia. There was a mean increase in arterial blood pressure of 52 ± 5 mmHg (300 μM; P < 0.01). Heart rate and sSNA also increased by 40 ± 4 beats/min ( P < 0.01) and 162 ± 33% ( P < 0.01), respectively. Phrenic nerve amplitude (PNamp, 73 ± 8%, P < 0.01) and phrenic expiratory period (+0.16 ± 0.02 s, P < 0.05) increased following 300 μM bombesin. The gain of the sympathetic baroreflex increased from −2.8 ± 0.7 to −5.4 ± 0.9% ( P < 0.01), whereas the sSNA range was increased by 99 ± 26% ( P < 0.01). During hyperoxic hypercapnia (10% CO2 in O2, 90 s), bombesin potentiated the responses in heart rate (−25 ± 5 beats/min, P < 0.01) and sSNA (+136 ± 29%, P < 0.001) but reduced PNamp (from 58 ± 6 to 39 ± 7%, P < 0.05). Finally, ICI-216,140 (1 mM), an in vivo antagonist for the bombesin receptor 2, attenuated the effects of 300 μM bombesin on blood pressure (21 ± 7 mmHg, P < 0.01). We conclude that bombesin is sympathoexcitatory at thoracic spinal segments. The effect on phrenic nerve activity may the result of spinobulbar pathways and activation of local motoneuronal pools.


1999 ◽  
Vol 6 (1) ◽  
pp. E6 ◽  
Author(s):  
Fernando L. Vale ◽  
Jennifer Burns ◽  
Amie B. Jackson ◽  
Mark N. Hadley

The optimal management of acute spinal cord injuries remains to be defined. The authors prospectively applied resuscitation principles of volume expansion and blood pressure maintenance to 77 patients who presented with acute neurological deficits as a result of spinal cord injuries occurring from C-1 through T-12 in an effort to maintain spinal cord blood flow and prevent secondary injury. According to the Intensive Care Unit protocol, all patients were managed by Swan-Ganz and arterial blood pressure catheters and were treated with immobilization and fracture reduction as indicated. Intravenous fluids, colloid, and vasopressors were administered as necessary to maintain mean arterial blood pressure above 85 mm Hg. Surgery was performed for decompression and stabilization, and fusion in selected cases. Sixty-four patients have been followed at least 12 months postinjury by means of detailed neurological assessments and functional ability evaluations. Sixty percent of patients with complete cervical spinal cord injuries improved at least one Frankel or American Spinal Injury Association (ASIA) grade at the last follow-up review. Thirty percent regained the ability to walk and 20% had return of bladder function 1 year postinjury. Thirty-three percent of the patients with complete thoracic spinal cord injuries improved at least one Frankel or ASIA grade. Approximately 10% of the patients regained the ability to walk and had return of bladder function. As of the 12-month follow-up review, 92% of patients demonstrated clinical improvement after sustaining incomplete cervical spinal cord injuries compared to their initial neurological status. Ninety-two percent regained the ability to walk and 88% regained bladder function. Eighty-eight percent of patients with incomplete thoracic spinal cord injuries demonstrated significant improvements in neurological function 1 year postinjury. Eighty-eight percent were able to walk and 63% had return of bladder function. The authors conclude that the enhanced neurological outcome that was observed in patients after spinal cord injury in this study was in addition to, and/or distinct from, any potential benefit provided by surgery. Early and aggressive medical management (volume resuscitation and blood pressure augmentation) of patients with acute spinal cord injuries optimizes the potential for neurological recovery after sustaining trauma.


1997 ◽  
Vol 87 (2) ◽  
pp. 239-246 ◽  
Author(s):  
Fernando L. Vale ◽  
Jennifer Burns ◽  
Amie B. Jackson ◽  
Mark N. Hadley

✓ The optimal management of acute spinal cord injuries remains to be defined. The authors prospectively applied resuscitation principles of volume expansion and blood pressure maintenance to 77 patients who presented with acute neurological deficits as a result of spinal cord injuries occurring from C-1 through T-12 in an effort to maintain spinal cord blood flow and prevent secondary injury. According to the Intensive Care Unit protocol, all patients were managed by using Swan—Ganz and arterial blood pressure catheters and were treated with immobilization and fracture reduction as indicated. Intravenous fluids, colloid, and vasopressors were administered as necessary to maintain mean arterial blood pressure above 85 mm Hg. Surgery was performed for decompression and stabilization, and fusion in selected cases. Sixty-four patients have been followed at least 12 months postinjury by means of detailed neurological assessments and functional ability evaluations. Sixty percent of patients with complete cervical spinal cord injuries improved at least one Frankel or American Spinal Injury Association (ASIA) grade at the last follow-up review. Thirty percent regained the ability to walk and 20% had return of bladder function 1 year postinjury. Thirty-three percent of the patients with complete thoracic spinal cord injuries improved at least one Frankel or ASIA grade. Approximately 10% of the patients regained the ability to walk and had return of bladder function. As of the 12-month follow-up review, 92% of patients demonstrated clinical improvement after sustaining incomplete cervical spinal cord injuries compared to their initial neurological status. Ninety-two percent regained the ability to walk and 88% regained bladder function. Eighty-eight percent of patients with incomplete thoracic spinal cord injuries demonstrated significant improvements in neurological function 1 year postinjury. Eighty-eight percent were able to walk and 63% had return of bladder function. The authors conclude that the enhanced neurological outcome that was observed in patients after spinal cord injury in this study was in addition to, and/or distinct from, any potential benefit provided by surgery. Early and aggressive medical management (volume resuscitation and blood pressure augmentation) of patients with acute spinal cord injuries optimizes the potential for neurological recovery after sustaining trauma.


1979 ◽  
Vol 236 (4) ◽  
pp. H635-H639
Author(s):  
D. S. Chen ◽  
D. E. Donald ◽  
J. C. Romero

In anesthetized, spontaneously hypertensive rats (Okamoto-Aoki), injections of 0.75, 1.5, and 3.0 microgram/kg PGE2 into the jugular vein caused transient decreases (mean +/- SE) in arterial pressure of 21 +/- 2, 37 +/- 3, and 78 +/- 6 mmHg, respectively, before cervical vagotomy and of 1 +/- 1, 15 +/- 4, and 15 +/- 6 mmHg after cervical vagotomy. The vasodepressor effect of jugular vein injections of 3.0 microgram/kg PGE2, but not of lower doses, was depressed by vagotomy in normotensive Wistar-Kyoto and Sprague-Dawley rats. Vagotomy did not reduce the hypotensive response to intra-aortic injections of PGE2 in these hypertensive and normotensive rats. The depressor effect of PGE2 thus appears to have a significant reflex component mediated through cardiopulmonary receptors subserved by vagal afferents, with hypertensive rats exhibiting a lower threshold than normotensive rats. A vagally mediated reflex component to the depressor effect of PGE2 could not be demonstrated in normotensive rabbits or in rabbits and rats with chronic renovascular hypertension. Thus, a naturally occurring vasoactive substance can stimulate cardiopulmonary receptors subserved by vagal afferents in the rat, and spontaneously hypertensive rats appear to be especially sensitive to this effect.


1984 ◽  
Vol 62 (7) ◽  
pp. 819-826 ◽  
Author(s):  
Uwe Ackermann ◽  
Terumi G. Irizawa ◽  
Susan Milojevic ◽  
Harald Sonnenberg

Tissue extracts derived from atria or ventricles of Sprague–Dawley rats were injected into Inactin-anesthetized assay rats. Compared with ventricular extracts, atrial extracts produced a 20 mmHg (1 mmHg = 133.322 Pa) fall in mean arterial blood pressure. This fall resulted from failure to increase cardiac output in compensation for peripheral vasodilation. Two factors were responsible: depression of heart rate (by 25 beats/min) and failure to increase cardiac performance. The time patterns and magnitudes of changes in cardiovascular parameters after cardiac extracts were not changed by prior atropinization. However, assay rats that were vagotomized showed no cardiac slowing after atrial extract and showed a significantly smaller decrease in mean arterial blood pressure than did sham-vagotomized or intact rats. Another group of assay rats was vagotomized as well as carotid-sinus-denervated before extract injection. In these rats the degree of hypotension caused by atrial extract was significantly greater than that observed after vagotomy alone and was not significantly different from that observed in rats with intact innervation. The results suggest that the hypotension that is caused by atrial extract, but not by ventricular extracts, results in part from the reflex effects of direct stimulation of chemosensitive cardiopulmonary receptors with vagal afferents and partly from the reflex effects of baroreceptor unloading. Ventricular extract had no hypotensive effect in any group of assay rats.


Sign in / Sign up

Export Citation Format

Share Document