spinal afferents
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 12)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Zachary A Knight ◽  
Ling Bai ◽  
Nilla Sivakumar ◽  
Sheyda Mesgarzadeh ◽  
Tom Ding ◽  
...  

Animals must learn through experience which foods are nutritious and should be consumed, and which are toxic and should be avoided. Enteroendocrine cells (EECs) are the principal chemosensors in the GI tract, but investigation of their role in behavior has been limited by the difficulty of selectively targeting these cells in vivo. Here we describe an intersectional genetic approach for manipulating EEC subtypes in behaving mice. We show that multiple EEC subtypes inhibit food intake but have different effects on learning. Conditioned flavor preference is driven by release of cholecystokinin whereas conditioned taste aversion is mediated by serotonin and substance P. These positive and negative valence signals are transmitted by vagal and spinal afferents, respectively. These findings establish a cellular basis for how chemosensing in the gut drives learning about food.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stewart Christie ◽  
Vladimir Zagorodnyuk

AbstractThe voiding of urine has a clear circadian rhythm with increased voiding during active phases and decreased voiding during inactive phases. Bladder spinal afferents play a key role in the regulation of bladder storage and voiding, but it is unknown whether they exhibit themselves a potential circadian rhythm. Therefore, this study aimed to determine the mechano- and chemo- sensitivity of three major bladder afferent classes at two opposite day-night time points. Adult female guinea pigs underwent conscious voiding monitoring and bladder ex vivo single unit extracellular afferent recordings at 0300 h and 1500 h to determine day-night modulation of bladder afferent activity. All guinea pigs voided a higher amount of urine at 1500 h compared to 0300 h. This was due to an increased number of voids at 1500 h. The mechano-sensitivity of low- and high-threshold stretch-sensitive muscular-mucosal bladder afferents to mucosal stroking and stretch was significantly higher at 1500 h compared to 0300 h. Low-threshold stretch-insensitive mucosal afferent sensitivity to stroking was significantly higher at 1500 h compared to 0300 h. Further, the chemosensitivity of mucosal afferents to N-Oleoyl Dopamine (endogenous TRPV1 agonist) was also significantly increased at 1500 h compared to 0300 h. This data indicates that bladder afferents exhibit a significant time-of-day dependent variation in mechano-sensitivity which may influence urine voiding patterns. Further studies across a 24 h period are warranted to reveal potential circadian rhythm modulation of bladder afferent activity.


2021 ◽  
Vol 10 (15) ◽  
pp. 3267
Author(s):  
Evan B. Sandler ◽  
Kyle Condon ◽  
Edelle C. Field-Fote

Transcutaneous spinal stimulation (TSS) and whole-body vibration (WBV) each have a robust ability to activate spinal afferents. Both forms of stimulation have been shown to influence spasticity in persons with spinal cord injury (SCI), and may be viable non-pharmacological approaches to spasticity management. In thirty-two individuals with motor-incomplete SCI, we used a randomized crossover design to compare single-session effects of TSS versus WBV on quadriceps spasticity, as measured by the pendulum test. TSS (50 Hz, 400 μs, 15 min) was delivered in supine through a cathode placed over the thoracic spine (T11-T12) and an anode over the abdomen. WBV (50 Hz; eight 45-s bouts) was delivered with the participants standing on a vibration platform. Pendulum test first swing excursion (FSE) was measured at baseline, immediately post-intervention, and 15 and 45 min post-intervention. In the whole-group analysis, there were no between- or within-group differences of TSS and WBV in the change from baseline FSE to any post-intervention timepoints. Significant correlations between baseline FSE and change in FSE were associated with TSS at all timepoints. In the subgroup analysis, participants with more pronounced spasticity showed significant decreases in spasticity immediately post-TSS and 45 min post-TSS. TSS and WBV are feasible physical therapeutic interventions for the reduction of spasticity, with persistent effects.


Author(s):  
Ivett Dorina Szeredi ◽  
Gábor Jancsó ◽  
Orsolya Oszlács ◽  
Péter Sántha

Abstract Peripheral nerve injury is associated with spinal microgliosis which plays a pivotal role in the development of neuropathic pain behavior. Several agents of primary afferent origin causing the microglial reaction have been identified, but the type(s) of primary afferents that release these mediators are still unclear. In this study, specific labeling of C-fiber spinal afferents by lectin histochemistry and selective chemodenervation by capsaicin were applied to identify the type(s) of primary afferents involved in the microglial response. Comparative quantitative morphometric evaluation of the microglial reaction in central projection territories of intact and injured peripheral nerves in the superficial (laminae I and II) and deep (laminae III and IV) spinal dorsal horn revealed a significant, about three-fold increase in microglial density after transection of the sciatic or the saphenous nerve. Prior perineural treatment of these nerves with capsaicin, resulting in a selective defunctionalization of C-fiber afferent fibers failed to affect spinal microgliosis. Similarly, peripheral nerve injury-induced increase in microglial density was unaffected in rats treated neonatally with capsaicin known to result in a near-total loss of C-fiber dorsal root fibers. Perineural treatment with capsaicin per se did not evoke a significant increase in microglial density. These observations indicate that injury-induced spinal microgliosis may be attributed to phenotypic changes in injured myelinated primary afferent neurons, whereas the contribution of C-fiber primary sensory neurons to this neuroimmune response is negligible. Spinal myelinated primary afferents may play a hitherto unrecognized role in regulation of neuroimmune and perisynaptic microenvironments of the spinal dorsal horn.


2020 ◽  
Author(s):  
Taija M. Hahka ◽  
Zhiqiu Xia ◽  
Juan Hong ◽  
Oliver Kitzerow ◽  
Alexis Nahama ◽  
...  

AbstractAcute lung injury (ALI) is associated with cytokine release, pulmonary edema and in the longer term, fibrosis. A severe cytokine storm and pulmonary pathology can cause respiratory failure due to acute respiratory distress syndrome (ARDS), which is one of the major causes of mortality associated with ALI. In this study, we aimed to determine a novel neural component through cardiopulmonary spinal afferents that mediates lung pathology during ALI/ARDS. We ablated cardiopulmonary spinal afferents through either epidural T1-T4 dorsal root ganglia (DRG) application or intra-stellate ganglia delivery of a selective afferent neurotoxin, resiniferatoxin (RTX) in rats 3 days post bleomycin-induced lung injury. Our data showed that both epidural and intra-stellate ganglia injection of RTX significantly reduced plasma extravasation and reduced the level of lung pro-inflammatory cytokines providing proof of principle that cardiopulmonary spinal afferents are involved in lung pathology post ALI. Considering the translational potential of stellate ganglia delivery of RTX, we further examined the effects of stellate RTX on blood gas exchange and lung edema in the ALI rat model. Our data suggest that intra-stellate ganglia injection of RTX improved pO2 and blood acidosis 7 days post ALI. It also reduced wet lung weight in bleomycin treated rats, indicating a reduction in lung edema. Taken together, this study suggests that cardiopulmonary spinal afferents play a critical role in lung inflammation and edema post ALI. This study shows the translational potential for ganglionic administration of RTX in ARDS.


2020 ◽  
Vol 26 (25) ◽  
pp. 3010-3014 ◽  
Author(s):  
Jackie D. Wood

Mucosal serotonin (5-HT) is a key paracrine signaling molecule in the integrated physiology of enterochromaffin cells, enteric mast cells, spinal afferent nerves and the enteric nervous system (ENS). Enterochromaffin cells release 5-HT as a paracrine signal to enteric mast cells, spinal afferents and neurons in the ENS. Enteric mast cells release multiple mediators of paracrine signaling, among which are histamine and the serine proteases, chymase and tryptase, as well as serotonin. Some of these mediators diffuse to receptors on afferent nociceptive and mechanosensitive terminals and sensitize the terminals in a manner that may underlie abdominal pain and distension induced pain in the irritable bowel syndrome. Substance P and calcitonin gene-related peptide (CGRP), released by spinal afferent innervation, degranulate enteric mast cells. Substance P and CGRP are significant factors in mucosal inflammation evoked by bacteria in the colonic microbiome. Binding of immunoglobulin antibodies to FcεRI receptors, on enteric mast cells, degranulate the mast cells and release paracrine mediators that overlay integrative microcircuitry in the ENS. An overlay of histamine “calls up” from the ENS library of programed gut behaviors, a defensive program consisting of a sequence of copious mucosal secretions, increased blood flow and powerful orthograde propulsion organized to move threats out of the colonic lumen. Symptoms of acute watery diarrhea, cramping abdominal pain and incontinence are associated with “running” of the defense program. Intestinal behavioral programs stored in the ENS library are described as working like digital “apps”.


2020 ◽  
Author(s):  
Kimberly A. Meerschaert ◽  
Peter C. Adelman ◽  
Robert L. Friedman ◽  
Kathryn M. Albers ◽  
H. R. Koerber ◽  
...  

AbstractVisceral organs receive neural innervation from sensory ganglia located adjacent to multiple levels of the brainstem and spinal cord. Here we examined whether molecular profiling could be used to identify functional clusters of colon afferents from thoracolumbar (TL), lumbosacral (LS), and nodose ganglia (NG) in the mouse. Profiling of TL and LS bladder afferents was also done. Visceral afferents were back-labeled using retrograde tracers injected into proximal and distal regions of colon or bladder, followed by single cell RT-qPCR and analysis via an automated hierarchical clustering method. Genes were chosen for assay (32 for bladder; 48 for colon) based on their established role in stimulus detection, regulation of sensitivity/function or neuroimmune interaction. A total of 132 colon afferents (from NG, TL and LS) and 128 bladder afferents (from TL and LS) were analyzed. Retrograde labeling from the colon showed NG and TL afferents innervate proximal and distal regions of the colon whereas 98% of LS afferents only project to distal regions. There were clusters of colon and bladder afferents, defined by mRNA profiling, that localized to either TL or LS ganglia. Mixed TL/LS clustering also was found. In addition, transcriptionally, NG colon afferents were almost completely segregated from colon DRG (TL or LS) neurons. These results indicate that populations of primary visceral afferents are functionally “tuned” to detect and interact with the internal environment and that information from all levels is integrated at higher (CNS) levels, not only for regulation of homeostatic functions, but for conscious visceral sensations including pain.Significance StatementVisceral organs are innervated by sensory neurons whose cell bodies are located in multiple ganglia associated with the brainstem and spinal cord. For the colon, this overlapping innervation is proposed to facilitate visceral sensation and homeostasis, where sensation and pain is mediated by spinal afferents and fear and anxiety (the affective aspects of visceral pain) are the domain of nodose afferents. Transcriptomic analysis performed here reveals that genes implicated in both homeostatic regulation and pain are found in afferents across all ganglia types, suggesting that conscious sensation and homeostatic regulation is the result of convergence, and not segregation, of sensory input.


2020 ◽  
pp. 141-154
Author(s):  
Francisco Romo-Nava ◽  
Susan L. McElroy

As frequently occurs in science, progress made on the neurobiology of bipolar disorder has followed a nonlinear course that often revisits deserted concepts. The neurobiological blueprint of bipolar disorder continues to unfold from a neurotransmitter-based hypothesis to include peptides and intracellular signaling pathways, and into a broader neuronal network perspective that involves cortical and subcortical regions in the brain. Moreover, new evidence makes it increasingly clear that the mechanisms of disease in bipolar disorder extend beyond the brain, providing plausible “missing links” between psychopathology and the elevated medical comorbidities. This is illustrated by the expanding role of the circadian system in bipolar disorder and the emerging evidence on the contribution of spinal afferents to the construct of mood, portraying that brain–body communication pathways are relevant to the pathophysiology of bipolar disorder. This chapter provides an overview of the current and emerging neurobiological frameworks for bipolar disorder.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Liang-Wu Fu ◽  
Stephanie C. Tjen-A-Looi ◽  
Sherwin Barvarz ◽  
Zhi-Ling Guo ◽  
Shaista Malik

AbstractMyocardial ischemia evokes powerful reflex responses through activation of vagal and sympathetic afferents in the heart through the release of ischemic metabolites. We have demonstrated that extracellular ATP stimulates cardiac sympathetic afferents through P2 receptor-mediated mechanism, and that opioid peptides suppress these afferents’ activity. However, the roles of both P2 receptor and endogenous opioids in cardiac sympathoexcitatory reflex (CSR) responses remain unclear. We therefore hypothesized that activation of cardiac P2 receptor evokes CSR responses by stimulating cardiac sympathetic afferents and these CSR responses are modulated by endogenous opioids. We observed that intrapericardial injection of α,β-methylene ATP (α,β-meATP, P2X receptor agonist), but not ADP (P2Y receptor agonist), caused a graded increase in mean arterial pressure in rats with sinoaortic denervation and vagotomy. This effect of α,β-meATP was abolished by blockade of cardiac neural transmission with intrapericardial procaine treatment and eliminated by intrapericardial A-317491, a selective P2X2/3 and P2X3 receptor antagonist. Intrapericardial α,β-meATP also evoked CSR response in vagus-intact rats. Furthermore, the P2X receptor-mediated CSR responses were enhanced by intrapericardial naloxone, a specific opioid receptor antagonist. These data suggest that stimulation of cardiac P2X2/3 and P2X3, but not P2Y receptors, powerfully evokes CSR responses through activation of cardiac spinal afferents, and that endogenous opioids suppress the P2X receptor-mediated CSR responses.


Sign in / Sign up

Export Citation Format

Share Document