Frequency-dependent modulation of renal blood flow by renal nerve activity in conscious rabbits

1997 ◽  
Vol 273 (2) ◽  
pp. R597-R608 ◽  
Author(s):  
B. J. Janssen ◽  
S. C. Malpas ◽  
S. L. Burke ◽  
G. A. Head

To examine the influence of the various frequency components of renal sympathetic nerve activity (RSNA) on renal blood flow (RBF) dynamics, a Doppler flow probe and renal nerve electrode were implanted on the left renal artery of 10 rabbits. Experiments were performed 4-9 days after surgery. Physiological changes in RSNA were induced by subjecting the rabbits to periods of breathing hypoxic gas mixtures. Signals were sampled at 1 kHz and analyzed by spectral analysis. During moderate hypoxia (arterial PO2 = 44 +/- 1 mmHg), arterial pressure and heart rate did not change, averaged RSNA increased by 90 +/- 7%, and RBF fell by 18 +/- 3%. In a separate group of renal-denervated rabbits (n = 6), no changes in RBF occurred during hypoxia. In intact rabbits, 53 +/- 4% of spectral density power of RSNA was found at the cardiac frequency and the remainder was predominantly coupled to respiration (approximately 0.9 Hz). During moderate hypoxia the amplitude of the RSNA oscillations increased 17 +/- 6 times at the cardiac frequency and 10 +/- 3 times at the respiration-related frequency. Modulation of RBF variability by the fluctuations of RSNA at the cardiac- and respiration-related frequency was, however, small. The normalized transfer gain between RSNA and RBF was approximately 0.1 at > 0.5 Hz. This means that, at > 0.5 Hz, maximally 10% of the amplitude of the RSNA oscillations is transmitted to corresponding RBF fluctuations. These transfer properties did not change during hypoxia. At < 0.5 Hz the transfer gain between RSNA and RBF increased. During moderate hypoxia, 0.3-Hz coherent oscillations of RSNA and RBF were found. In renal-denervated rabbits, 0.3-Hz oscillations in RBF were absent. Thus the renal vasculature was able to follow relatively low-frequency (< 0.5-Hz) fluctuations of RSNA and responded with corresponding oscillations in RBF. In contrast, the renal vasculature responded with increased constriction at the high-frequency (> 0.5-Hz) fluctuations of RSNA. These findings suggest that, in conscious rabbits, high-frequency oscillations of RSNA contribute to the vasoconstrictor tone, whereas the lower frequencies of RSNA contribute to the variability of RBF.

1996 ◽  
Vol 271 (6) ◽  
pp. R1489-R1499 ◽  
Author(s):  
S. C. Malpas ◽  
A. Shweta ◽  
W. P. Anderson ◽  
G. A. Head

Changes in renal sympathetic nerve activity (SNA) are postulated to influence renal function in selective ways, such that different levels of activation produce particular renal responses, initially in renin release, then sodium excretion, with changes in renal hemodynamics occurring only with much greater stimulus intensities. The aim of this study was to determine the renal hemodynamic and excretory responses to graded physiological increases in renal SNA induced by breathing different hypoxic gas mixtures. Experiments were performed in seven conscious rabbits subjected to four gas mixtures (14% O2, 10% O2, 10% O2 + 3% CO2, and 10% O2 + 5% CO2) and instrumented for recording of renal nerve activity. After a 30-min control period, rabbits were subjected to one of the four gas mixtures for 30 min, and then room air was resumed for a further 30 min. The four gas mixtures increased renal SNA by 14, 38, 49, and 165% respectively, but arterial pressure (thus renal perfusion pressure) was not altered by any of the gas mixtures. The greatest level of sympathetic activation produced significant falls in glomerular filtration rate (GFR), renal blood flow, sodium and fluid excretion, and significant increases in plasma renin activity. These returned to levels not significantly different from control conditions in the 30-min period after the gas mixture. When the changes to the various gas mixtures were analyzed within each rabbit, a significant linear relationship was found with all variables to the increase in SNA. Renal denervation in a separate group of seven rabbits completely abolished all of the above responses to the different gas mixtures. Thus graded activation of renal nerves induced by changes in inspired gas mixtures resulted in graded decreases in renal blood flow, GFR, and sodium excretion and graded increases in renin activity, with the changes occurring across a similar range of nerve activities; there was no evidence for a selective change in any renal variable.


2001 ◽  
Vol 280 (5) ◽  
pp. R1534-R1545 ◽  
Author(s):  
Carolyn J. Barrett ◽  
Michael A. Navakatikyan ◽  
Simon C. Malpas

We have developed a system for long-term continuous monitoring of cardiovascular parameters in rabbits living in their home cage to assess what role renal sympathetic nerve activity (RSNA) has in regulating renal blood flow (RBF) in daily life. Blood pressure, heart rate, locomotor activity, RSNA, and RBF were recorded continuously for 4 wk. Beginning 4–5 days after surgery a circadian rhythm, dependent on feeding time, was observed. When averaged over all days RBF to the innervated and denervated kidneys was not significantly different. However, control of RBF around these mean levels was dependent on the presence of the renal sympathetic nerves. In particular we observed episodic elevations in heart rate and other parameters associated with activity. In the denervated kidney, during these episodic elevations, the increase in renal resistance was closely related to the increase in arterial pressure. In the innervated kidney the renal resistance response was significantly more variable, indicating an interaction of the sympathetic nervous system. These results indicate that whereas overall levels of RSNA do not set the mean level of RBF the renal vasculature is sensitive to episodic increases in sympathetic nerve activity.


2008 ◽  
Vol 295 (5) ◽  
pp. F1449-F1456 ◽  
Author(s):  
Tracy D. Bell ◽  
Gerald F. DiBona ◽  
Rachel Biemiller ◽  
Michael W. Brands

This study used 16 h/day measurement of renal blood flow (RBF) and arterial pressure (AP) to determine the role of nitric oxide (NO) in mediating the renal vasodilation caused by onset of type 1 diabetes. The AP and RBF power spectra were used to determine the autoregulatory efficiency of the renal vasculature. Rats were instrumented with artery and vein catheters and a Transonic flow probe on the left renal artery and were divided randomly into four groups: control (C), diabetes (D), control plus nitro-l-arginine methyl ester (l-NAME; CL), and diabetes plus l-NAME (DL). Mean AP averaged 90 ± 1 and 121 ± 1 mmHg in the D and DL groups, respectively, during the control period, and RBF averaged 5.9 ± 1.2 and 5.7 ± 0.7 ml/min, respectively. Respective C and CL groups were not different. Onset of diabetes (streptozotocin 40 mg/kg iv) in D rats increased RBF gradually, but it averaged 55% above control by day 14. In DL rats, on the other hand, RBF remained essentially constant, tracking with RBF in the nondiabetic C and CL groups for the 2-wk period. Diabetes did not change mean AP in any group. Transfer function analysis revealed impaired dynamic autoregulation of RBF overall, including the frequency range of tubuloglomerular feedback (TGF), and l-NAME completely prevented those changes as well. These data strongly support a role for NO in causing renal vasodilation in diabetes and suggest that an effect of NO to blunt RBF autoregulation may play an important role.


1992 ◽  
Vol 262 (5) ◽  
pp. R926-R932 ◽  
Author(s):  
H. C. Grady ◽  
E. M. Bullivant

The extent to which renal blood flow (RBF) varied during normal daily activity and its dependence on renal nerve activity were studied in unrestrained rats. RBF (measured with a pulsed Doppler flow probe) and behavior pattern (observed with a video camera) were recorded during both phases of the light-dark cycle (n = 11). RBF was highest (100%) when the rat was fully relaxed and apparently asleep (9% time) but was significantly lower (P less than 0.01) during the remainder of the time. When quiescent but not fully relaxed, RBF was 89.7 +/- 0.3% of the maximum; when alert and completely still, it was 74.1 +/- 0.8%; and when grooming, it was 63.7 +/- 0.9%. Mean daily RBF was 80% of maximum flow. During saline infusion into cuffs around the renal arteries, RBF was reduced to 38.4 +/- 0.7% of maximum flow by gentle handling. When the infusion was changed to Xylocaine (5%), which blocked transmission in the renal nerve, similar treatment reduced RBF to 80.2 +/- 0.7% with ipsilateral and to 94.7 +/- 0.7% with bilateral infusions. We conclude that RBF varies considerably in unrestrained animals under normal conditions and that the variations largely result from changes in renal nerve activity.


1998 ◽  
Vol 274 (5) ◽  
pp. R1283-R1294 ◽  
Author(s):  
Simon C. Malpas ◽  
Roger G. Evans ◽  
Geoff A. Head ◽  
Elena V. Lukoshkova

We have examined the role of the renal sympathetic nerves in the renal blood flow (RBF) response to hemorrhage in seven conscious rabbits. Hemorrhage was produced by blood withdrawal at 1.35 ml ⋅ min−1 ⋅ kg−1for 20 min while RBF and renal sympathetic nerve activity (RSNA) were simultaneously measured. Hemorrhage was associated with a gradual increase in RSNA and decrease in RBF from the 4th min. In seven denervated animals, the resting RBF before hemorrhage was significantly greater (48 ± 1 vs. 31 ± 1 ml/min intact), and the decrease in RBF did not occur until arterial pressure also began to fall (8th min); however, the overall percentage change in RBF by 20 min of blood withdrawal was similar. Spectral analysis was used to identify the nature of the oscillations in each variable. Before hemorrhage, a rhythm at ∼0.3 Hz was observed in RSNA, although not in RBF, whose spectrogram was composed mostly of lower-frequency (<0.25 Hz) components. The denervated group of rabbits had similar frequency spectrums for RBF before hemorrhage. RSNA played a role in dampening the effect of oscillations in arterial pressure on RBF as the transfer gain between mean arterial pressure (MAP) and RBF for frequencies >0.25 Hz was significantly less in intact than denervated rabbits (0.83 ± 0.12 vs. 1.19 ± 0.10 ml ⋅ min−1 ⋅ mmHg−1). Furthermore, the coherence between MAP and RBF was also significantly higher in denervated rabbits, suggesting tighter coupling between the two variables in the absence of RSNA. Before the onset of significant decreases in arterial pressure (up to 10 min), there was an increase in the strength of oscillations centered around 0.3 Hz in RSNA. These were accompanied by increases in the spectral power of RBF at the same frequency. As arterial pressure fell in both groups of animals, the dominant rhythm to emerge in RBF was centered between 0.15 and 0.20 Hz and was present in intact and denervated rabbits. It is speculated that this is myogenic in origin. We conclude that RSNA can induce oscillations in RBF at 0.3 Hz, plays a significant role in altering the effect of oscillations in arterial pressure on RBF, and mediates a proportion of renal vasoconstriction during hemorrhage in conscious rabbits.


1989 ◽  
Vol 256 (4) ◽  
pp. H1079-H1086 ◽  
Author(s):  
G. A. Riegger ◽  
D. Elsner ◽  
E. P. Kromer

Changes of neurohumoral factors including vasodilatory prostaglandins (PGs) were investigated in an experimental model of moderate low-cardiac-output status induced by rapid right ventricular pacing (240 beats/min). After 7 days of pacing, we studied the response of renal, hormonal, and hemodynamic parameters to cyclooxygenase inhibition by indomethacin and the effects of the renin system by converting-enzyme blockade in addition to the inhibition of PG synthesis. Lowering cardiac output increased plasma levels of norepinephrine and atrial natriuretic peptide. Plasma renin concentration was suppressed, despite a fall in cardiac output and blood pressure and a stimulation of sympathetic nerve activity. Urinary excretion of PGE2 was increased (P less than 0.04); plasma levels of PGE2 and 6-keto-PGF1 alpha were unchanged as measured in blood from the renal vein, pulmonary artery, and aorta. During low cardiac output, we found a significant decrease of glomerular filtration rate, whereas renal blood flow and renal and peripheral vascular resistances were unchanged. Administration of indomethacin decreased plasma and urinary PGs significantly, markedly reduced renal blood flow, and increased renal vascular resistance without affecting peripheral vascular resistance. The additional blockade of the renin-angiotensin system by captopril showed mainly a vasodilator effect on peripheral arterial resistance vessels, resulting in an increase of cardiac output. Our results suggest that, in moderate low-cardiac-output status, renal blood flow is maintained by renal vasodilator PGs, which counterbalance vasoconstrictor mechanisms like the activated sympathetic nerve activity. We indirectly showed the importance of angiotensin II in preserving glomerular filtration rate, which declines when renin secretion is suppressed, as it may be the case in moderate heart failure.(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
Vol 249 (5) ◽  
pp. F680-F687 ◽  
Author(s):  
H. Morita ◽  
S. F. Vatner

Effects of acute volume expansion with isotonic isoncotic 3% dextran in saline were examined on renal nerve activity (RNA), renal blood flow, vascular resistance, and sodium and water excretion in conscious dogs. In intact dogs, acute volume expansion increased mean arterial pressure 15 +/- 3 mmHg, left atrial pressure 5.5 +/- 0.6 mmHg, and decreased RNA 88 +/- 2%, whereas renal blood flow did not change and renal vascular resistance increased slightly. When renal perfusion pressure was maintained at control levels, volume expansion decreased RNA 87 +/- 2% and renal vascular resistance 15 +/- 4%. During the 80-min period after volume expansion, urine flow rate increased 0.66 +/- 0.13 ml/min and sodium excretion rose 3.89 +/- 0.54 mueq X min-1 X kg-1, whereas RNA remained depressed. Arterial baroreceptor denervation (ABD) did not diminish responses of RNA, renal blood flow, renal vascular resistance, or sodium and water excretion to volume expansion. After ABD plus bilateral cervical vagotomy, volume expansion did not decrease RNA, and diuretic and natriuretic responses were significantly attenuated (P less than 0.025). However, responses of renal blood flow to volume expansion were not altered significantly. In conscious dogs with renal denervation, responses of renal blood flow to volume expansion were not impaired, whereas diuretic and natriuretic responses were attenuated (P less than 0.025). Thus, in intact conscious dogs, vagally mediated reflex decreases in RNA induced by acute volume expansion exerted a significant effect on sodium and water excretion but little control of renal blood flow and renal vascular resistance.


1972 ◽  
Vol 42 (2) ◽  
pp. 223-233 ◽  
Author(s):  
J. C. McGiff ◽  
K. Crowshaw ◽  
N. A. Terragno ◽  
K. U. Malik ◽  
A. J. Lonigro

1. The concentrations of prostaglandin E(PGE)- and prostaglandin F(PGF)-like substances in renal venous blood were determined by parallel bioassay of extracts of renal venous effluent before and during adrenergic stimulation of the kidney and were related to simultaneous measurements of renal blood flow and urine flow. 2. When noradrenaline was infused continuously into the renal artery, its initial vasoconstrictor and antidiuretic effects diminished on seven of eight occasions in six dogs. Rapid recovery of renal blood flow and urine flow was invariably associated with increasing concentration in renal venous blood of a substance having the physicochemical, chromatographic and biological properties of a prostaglandin of the E series. In the one instance when rapid early recovery of renal blood flow was not observed the concentration of PGE-like substance was not increased. 3. In contrast, during renal nerve stimulation early rapid recovery of renal blood flow and urine flow did not occur and the concentration of a PGE-like substance in renal venous blood did not increase. The concentration of a PGF-like substance in renal venous effluent did not increase in response to either stimulus. 4. Since PGE2, unlike PGF2α, is a potent renal vasodilator and diuretic, the intrarenal release of this substance by noradrenaline in concentrations similar to those determined for a PGE-like substance (>0·50 ng/ml assayed as PGE2 equivalents) would account for the changes in renal blood flow and urine flow in these experiments when the renal actions of noradrenaline were attenuated. 5. These results support the proposal that renal prostaglandins function in an intrarenal negative feedback control system which regulates antidiuretic and vasoconstrictor systems.


Sign in / Sign up

Export Citation Format

Share Document