renal nerve
Recently Published Documents


TOTAL DOCUMENTS

640
(FIVE YEARS 42)

H-INDEX

41
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Vinícius Schiavinatto Mariano ◽  
Patrícia Aline Boer ◽  
José Antônio Rocha Gontijo

A wealth of evidence showed that low birth weight is associated with environmental disruption during gestation, triggering embryotic or fetal adaptations and increasing the susceptibility of progeny to non-communicable diseases, including metabolic and cardiovascular diseases, obesity, and arterial hypertension. In addition, dietary disturbance during pregnancy in animal models has highlighted mechanisms that involve the genesis of arterial hypertension, particularly severe maternal low-protein intake (LP). Functional studies demonstrated that maternal low-protein intake leads to the renal decrease of sodium excretion and the dysfunction of the renin-angiotensin-aldosterone system signaling of LP offspring. The antinatriuretic effect is accentuated by a reduced number of nephron units and glomerulosclerosis, which are critical in establishing arterial hypertension phenotype. Also, in this way, studies have shown that the overactivity of the central and peripheral sympathetic nervous system occurs due to reduced sensory (afferent) renal nerve activity. As a result of this reciprocal and abnormal renorenal reflex, there is an enhanced tubule sodium proximal sodium reabsorption, which, at least in part, contributes directly to arterial hypertension development in some of the programmed models. A recent study has observed that significant changes in adrenal medulla secretion could be involved in the pathophysiological process of increasing blood pressure. Thus, this review aims to compile studies that link the central and peripheral sympathetic system activity mechanisms on water and salt handle and blood pressure control in the maternal protein-restricted offspring. Besides, these pathophysiological mechanisms mainly may involve the modulation of neurokinins and catecholamines pathways.


2021 ◽  
pp. 1-10
Author(s):  
Annemiek F. Hoogerwaard ◽  
Ahmet Adiyaman ◽  
Mark R. de Jong ◽  
Jaap-Jan J. Smit ◽  
Jan-Evert Heeg ◽  
...  

2021 ◽  
Vol 32 (10) ◽  
pp. 2393-2395
Author(s):  
Kristina Rodionova ◽  
Tilmann Ditting ◽  
Roland Veelken

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Sean D Stocker ◽  
Leon J DeLalio

Renal denervation lowers arterial blood pressure (ABP) in both clinical populations and multiple experimental models of hypertension. This therapeutic effect is partly attributed to the removal of overactive renal sensory nerves that increase sympathetic efferent activity and ABP. Renal sensory nerves highly express TRPV1 channels, and administration of the TRPV1 agonist capsaicin increases renal sensory nerve activity. However, the extent by which TRPV1 channels directly contribute to renal nerve dependent models of hypertension has not been tested. To test this hypothesis, we generated a novel TRPV1 -/- rat using CRISPR/Cas9 and deletion of exon 3. Male and female TRPV1 -/- and wild-type littermates (8-12 weeks) were instrumented with telemetry. At 2 weeks later, renovascular hypertension via renal stenosis was produced by placement of a PTFE cuff (0.16 x 0.22 inches, 1mm long) around the right renal artery. Male TRPV1 -/- and wild-type rats had no differences in baseline mean ABP (99±2 vs 98±3 mmHg, respectively; n=7-9) or heart rate (390±7 vs 400±8 bpm, respectively). Renal stenosis significantly increased mean ABP in both groups; however, mean ABP was significantly lower at Day 28 in male TRPV1 -/- versus wild-type rats (125±8 vs 155±2 mmHg, respectively: P<0.01). Ganglionic blockade with chlorisondamine (2.5mg/kg, sc) at Day 28 produced a smaller fall in mean ABP of male TRPV1 -/- versus wild-type rats (-53±4 vs -86±3 mmHg, respectively; P<0.001). On the other hand, female TRPV1 -/- and wild-type rats had no differences in baseline mean ABP (102±2 vs 104±1 mmHg, respectively; n=6-9) or heart rate (419±8 vs 410±7 bpm, respectively). Renal stenosis significantly increased mean ABP in both groups; however, there were no differences at Day 28 between female TRPV1 -/- versus wild-type rats (117±8 vs 122±6 mmHg, respectively). Moreover, the increase in mean ABP was smaller in females versus males. The ganglionic blocker chlorisondamine produced similar depressor responses in female TRPV1 -/- versus wild-type rats (-64±7 vs -65±7 mmHg, respectively). These findings illustrate a sex difference in renovascular hypertension in rats, but importantly indicate that TRPV1 channels contribute to the established phase of renovascular hypertension in male rats.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Andrew Sharp ◽  
Stefan Tunev ◽  
Markus P Schlaich ◽  
David P LEE ◽  
Aloke Finn ◽  
...  

Background: The safety and efficacy of catheter-based radio frequency (RF) renal denervation (RDN) have been demonstrated in randomized, sham-controlled trials. Long-term durability of blood pressure reduction following RDN has also been demonstrated by all-comer registries, although published pre-clinical reports of functional renal nerve regrowth are not consistent. We quantified the processes that support RDN procedural durability utilizing animal models. Methods: Animal studies were conducted in accordance with published guidelines. RDN was performed (4 lesions in the main renal artery) in normotensive swine using the Symplicity Spyral™ RDN system (Medtronic, Santa Rosa, CA, USA). Two additional groups not undergoing RDN served as control. Serial histological tissue samples were obtained in separate groups at 7 (n=12/group) and 180 (N=16/group) days post-procedure in all animals followed by bioanalytical quantification of cortical norepinephrine (NE) levels and immunohistochemical analysis of renal cortical axon density in matched samples. Results: Renal cortical axon density and NE levels were significantly reduced at 7 days and persisted through 180 days following RDN compared with control ( Figure ). Nerve fibrosis and necrosis were observed in the region of ablation, while nerve body atrophy was apparent distal to ablation location at 180 days. Conclusions: Reductions in both NE and renal cortical axon density were sustained at 7 and 180 days post-RDN procedure using RF renal denervation in a normotensive swine model. These data confirm and extend other pre-clinical and clinical evidence of long-term durability of the RDN procedure using RF energy.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Hao Zhou ◽  
Yinchuan Lai ◽  
Weijie Chen ◽  
Yanping Xu ◽  
Hang Liu ◽  
...  

Aims: To investigate alterations of intrarenal neurohormonal system involved in BP regulation after renal nerve stimulation (RNS)-guided renal denervation (RDN), and compare the significance of ablation on different BP-elevated magnitude sites. Methods and Results: Twenty-one dogs that met inclusion criteria were randomized to receive RDN at strong (SRA group, n=7) or weak (WRA group, n=7) BP-elevation response sites guided by RNS, or underwent RNS only (RNS-control, RSC, n=7), and fully recovered from the acute experiments. After 4 weeks, renal sympathetic and renin angiotensin system activity parameters, and major transporter expression were assessed by immunology and histochemistry. Compared with RSC group, RDN therapy significantly attenuated renal norepinephrine and tyrosine hydroxylase levels, alleviated renin release, and inhibited onsite generation of angiotensinogen. Meanwhile, the expression of exciting axis components, including angiotensin-converting enzyme (ACE), angiotensin II and angiotensin II type-1 receptor, were down-regulated, while the protective axis components such as ACE2 and Mas receptors, were up-regulated in both WRA and SRA group. Moreover, RDN reduced the abundance of aquaporin-1 and aquaporin-2 in kidneys. Although RDN had a minimal effect on overall NKCC2 expression, its activation (p-NKCC2) and directional enrichment in the apical membrane (mNKCC2) were dramatically blunted. Further analysis showed that all these changes were more significant in SRA group than WRA group. Conclusions: RDN effectively reduced systemic BP by affecting renal neurohormone-receptor axis, as well as expression and/or activation of major transporters. Selective RDN at strong BP-response sites presented a more superior beneficial effect, reconfirmed the feasibility of RNS-guided RDN.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Maria A Gonzalez-Gonzalez ◽  
John Beitter ◽  
Kevin Romero ◽  
Danny Lam ◽  
Ana G Hernandez-Reynoso ◽  
...  

Hypertension affects nearly half of the US population but only 43% achieved blood pressure control with medication alone. Medical devices for hypertension include implantable lead electrodes that stimulate the carotid baroreceptors with promising results, albeit with significant adverse complications. To address these limitations, we have proposed the use of deep peroneal nerve stimulation (DPNS), which elicited a depressor response in anesthetized, breathing supported, spontaneously hypertensive rats (SHR). In this study, we further define the electrical stimulation parameters that optimize the DPNS depressor response, and demonstrated that increasing the pulse duration from 0.15 ms to 1ms, of 1.0 mA pulses at 2 Hz for 10 sec, significantly reduced the mean arterial pressure (MAP) by 8±4 mmHg (p<0.005; n=4) in this animal model. DPNS also caused an immediate increase in renal nerve activity (RNA; p< 0.004, n=5), which may represent afferent sensory axons from the kidney, although this possibility needs to be further investigated. In a separate cohort of anesthetized SHR animals, breathing spontaneously, we demonstrated that optimal DPNS stimulation reduced the MAP from 121±3 to 108±4; p=0.02; n=10). To confirm if DPNS is able to evoke a depressor response in fully awake SHR animals, we developed a novel miniaturized wireless microchannel electrode (w-μCE) with a L-shaped microchannel, through which the DPN slides and locks into a recording/stimulation chamber, causing no discomfort to the animal during locomotion. Two weeks after implantation of the w-μCE neural stimulation device, animals were movement-retrained to received wireless DPNS for 10 min daily for 2 weeks. Blood pressure was measured by tail-cuff at baseline, 10 days after device implantation, and 1 and 2-hr 15 days after DPNS. After two weeks of DPNS, the acute neuromodulation treatment reduced the initial systolic BP of 154±20 mmHg to 127±7 and 119±2 mmHg at 1 and 2 hr; respectively (p< 0.001, n=15-19 measurements; n=2 animals). These results provide evidence of the effectiveness and reliability of DPN neuromodulation as a possible treatment for drug-resistant hypertension.


Author(s):  
Xingxing Cai ◽  
Yichen Shen ◽  
Yuli Yang ◽  
Wei Wang ◽  
Li Qian ◽  
...  

Background We have previously reported the feasibility of noninvasive stereotactic body radiotherapy (SBRT) as a novel approach for renal denervation. Methods and Results Herein, from a translational point of view, we assessed the antihypertensive effect and chronological evolution of SBRT‐induced renal nerve injury within 6 months in a hypertensive swine model. Hypertension was induced in swine by subcutaneous implantation of deoxycorticosterone acetate pellets in combination with a high‐salt diet. A single dose of 25 Gy with SBRT was delivered for renal denervation in 9 swine within 3.4±1.0 minutes. Blood pressure levels at baseline and 1 and 6 months post‐SBRT were comparable to control (n=5), whereas renal norepinephrine was significantly lower at 6 months ( P <0.05). Abdominal computed tomography, performed before euthanasia and renal function assessment, remained normal. Standard semiquantitative histological assessment showed that compared with control (1.4±0.4), renal nerve injury was greater at 1 month post‐SBRT (2.3±0.3) and peaked at 6 months post‐SBRT (3.2±0.8) ( P <0.05), along with a higher proportion of active caspase‐3–positive nerves ( P <0.05). Moreover, SBRT resulted in continuous dysfunction of renal sympathetic nerves and low level of nerve regeneration in 6 months by immunohistochemistry analysis. Conclusions SBRT delivering 25 Gy for renal denervation was safe and related to sustained reduction of sympathetic activity by aggravating nerve damage and inhibiting nerve regeneration up to 6 months; however, its translation to clinical trial should be cautious because of the negative blood pressure response in the deoxycorticosterone acetate–salt hypertensive swine model.


Author(s):  
Hu L X ◽  
◽  
Jiang W Y ◽  
Wang Y Y ◽  
Chen J W ◽  
...  

Aims: To investigate the renal aquaporin-1 (AQP1) expression under chronic stress (induced by foot shock) condition and possible mechanisms involved in rats. Methods: The chronic stress model was established in male Sprague Dawley (SD) rats by foot shock for two weeks. Rats were randomly divided into control group, chronic stress group, renal denervation group, renal denervation plus chronic stress group, captopril (an angiotensin I converting enzyme inhibitor, ACEI) plus chronic stress group and tempol (a superoxide dismutase mimetic) plus chronic stress group. Body weight, food intake, water intake, blood pressure and heart rate were monitored. Real-time PCR was used to detect the mRNA level of AQP1 in the renal tissue. Immunohistochemistry stain was used to observe the expression and location of AQP1 in rat kidneys. Results: Chronic stress reduced body weight gain and food intake, while it significantly increased systolic blood pressure and renal expressions of mRNA and protein of AQP1 (P<0.05) as compared with control group. Renal denervation and tempol treatments did not affect stress-induced decreases of body weight gain and food intake. Renal denervation, captopril and tempol treatments decreased systolic blood pressure. Compared with the chronic stress group, mRNA and protein expression of AQP1 was decreased (P<0.05) in renal denervation plus chronic stress group, captopril plus chronic stress group and tempol plus chronic stress group. Conclusion: Chronic stress induces increase of the AQP1 expression in kidney, which is regulated by renal nerve system, renin-angiotensin system and oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document