Natriuretic peptide receptor A mediates renal sodium excretory responses to blood volume expansion

2003 ◽  
Vol 285 (4) ◽  
pp. F694-F702 ◽  
Author(s):  
Shang-Jin Shi ◽  
Elangovan Vellaichamy ◽  
So Yeon Chin ◽  
Oliver Smithies ◽  
L. Gabriel Navar ◽  
...  

The deficiency of Npr1 [genetic determinant of natriuretic peptide receptor A (NPRA)] increases arterial pressures and causes hypertensive heart disease in mice similar to those seen in untreated human hypertensive patients. However, the quantitative role of NPRA in mediating the renal responses to blood volume expansion remains uncertain. To determine the specific contribution of NPRA in mediating the signaling mechanisms responsible for natriuretic and diuretic responses to nondilutional intravascular expansion, we administered whole blood to anesthetized Npr1 homozygous null mutant (0-copy), wild-type (2-copy), and gene-duplicated (4-copy) mice. In wild-type (2-copy) animals, urinary flow (μl · min–1 · g kidney wt–1) increased from 4.9 ± 1.0 to 14.4 ± 1.8 and sodium excretion (μeq · min–1 · g kidney wt–1) from 1.15 ± 0.22 to 3.11 ± 0.60, associated with a rise in glomerular filtration rate (GFR; ml · min–1 · g kidney wt–1) from 0.63 ± 0.03 to 0.82 ± 0.09 and renal plasma flow (RPF; ml · min–1 · g kidney wt–1) from 2.96 ± 0.17 to 4.36 ± 0.41, whereas arterial pressure did not significantly increase. After volume expansion, 0-copy mice showed significantly lesser increases in urinary flow ( P < 0.001) and sodium excretory ( P < 0.001) responses even though the increases in arterial pressures were greater ( P < 0.001) compared with 2-copy mice. The 4-copy mice showed augmented responses in urinary flow ( P < 0.01) and sodium excretion ( P < 0.001) along with rises in both GFR ( P < 0.01) and RPF ( P < 0.01) compared with 2-copy wild-type mice. These results establish that NPRA activation is the predominant mechanism mediating the natriuretic, diuretic, and renal hemodynamic responses to acute blood volume expansion.

2001 ◽  
Vol 281 (4) ◽  
pp. F665-F673 ◽  
Author(s):  
Shang-Jin Shi ◽  
Huong T. Nguyen ◽  
Guru Dutt Sharma ◽  
L. Gabriel Navar ◽  
Kailash N. Pandey

We have studied cardiovascular and renal phenotypes in Npr1 (genetic determinant of natriuretic peptide receptor-A; NPRA) gene-disrupted mutant mouse model. The baseline systolic arterial pressure (SAP) in 0-copy mutant (−/−) mice (143 ± 2 mmHg) was significantly higher than in 2-copy wild-type (+/+) animals (104 ± 2 mmHg); however, the SAP in 1-copy heterozygotes (+/−) was at an intermediate value (120 ± 4 mmHg). To determine whether Npr1 gene function affects the renin-angiotensin-aldosterone system (RAAS), we measured the components of RAAS in plasma, kidney, and adrenal gland of 0-copy, 1-copy, and 2-copy male mice. Newborn (2 days after the birth) 0-copy pups showed 2.5-fold higher intrarenal renin contents compared with 2-copy wild-type counterparts (0-copy 72 ± 12 vs. 2-copy 30 ± 7 μg ANG I · mg protein−1 · h−1, respectively). The intrarenal ANG II level in 0-copy pups was also higher than in 2-copy controls (0-copy 33 ± 5 vs. 2-copy 20 ± 2 pg/mg protein, respectively). However, both young (3 wk) and adult (16 wk) 0-copy mutant mice showed a dramatic 50–80% reduction in plasma renin concentrations (PRCs) and in expression of renal renin message compared with 2-copy control animals. In contrast, the adrenal renin content and mRNA expression levels were 1.5- to 2-fold higher in 0-copy adult mice than in 2-copy animals. The results suggest that inhibition of renal and systemic RAAS is a compensatory response that prevents greater increases in elevated arterial pressures in adult NPRA null mutant mice. However, the greater renin and ANG II levels seen in 0-copy newborn pups provide evidence that the direct effect of NPRA activation on renin is an inhibitory response.


1988 ◽  
Vol 255 (5) ◽  
pp. F936-F943 ◽  
Author(s):  
R. V. Paul ◽  
T. Ferguson ◽  
L. G. Navar

To evaluate the role of atrial natriuretic factor (ANF) in the renal response to acute blood volume expansion without hemodilution, a reservoir syringe filled with donor rat blood was connected to the femoral artery and vein of anesthetized Sprague-Dawley rats to allow rapid equilibration of the reservoir with the intravascular blood. Volume expansion with blood from the reservoir in two steps (of 1 and 1.5% body wt, separated by 1 h, n = 5 rats) produced a mean peak increase in plasma immunoreactive ANF from 99 +/- 21 to 1,310 +/- 230 pg/ml (P less than 0.001); plasma ANF levels throughout these experiments correlated significantly with simultaneously measured urine flow (r = 0.74, P less than 0.005) and sodium excretion (r = 0.65, P less than 0.005). Another group (n = 7) underwent the same two-step procedure; after the second volume expansion, high-dose atriopeptin III infusion (0.4 microgram.kg-1.min-1 did not further increase fractional excretion of sodium (3.17 +/- 0.27 to 2.50 + 0.39%, P = NS). In another group (n = 9 rats), the same dose of atriopeptin III was started before any blood volume expansion. After the resulting hypotension was corrected by restoration of blood volume, an additional 1.5% body weight blood volume expansion did not further augment sodium excretion. We conclude that the diuresis and natriuresis, which occur in response to volume expansion without hemodilution, rise and fall in parallel with immunoreactive ANF in the plasma, and that ANF and acute blood volume expansion act on the kidney through a similar, saturable mechanism.


2010 ◽  
Vol 298 (1) ◽  
pp. F103-F108 ◽  
Author(s):  
Di Zhao ◽  
Kailash N. Pandey ◽  
L. Gabriel Navar

Atrial natriuretic peptide (ANP) elicits natriuresis; however, the relative contributions of proximal and distal nephron segments to the overall ANP-induced natriuresis have remained uncertain. This study was performed to characterize the effects of ANP on distal nephron sodium reabsorption determined after blockade of the two major distal nephron sodium transporters with amiloride (5 μg/g body wt) plus bendroflumethiazide (12 μg/g body wt) in male anesthetized C57/BL6 and natriuretic peptide receptor-A gene (Npr1) targeted four-copy mice. The lower dose of ANP (0.1 ng·g body wt−1·min−1, n = 6) increased distal sodium delivery (DSD, 2.4 ± 0.4 vs. 1.6 ± 0.2 μeq/min, P < 0.05) but did not change fractional reabsorption of DSD compared with control (86.3 ± 2.0 vs. 83.9 ± 3.6%, P > 0.05), thus limiting the magnitude of the natriuresis. In contrast, the higher dose (0.2 ng·g body wt−1·min−1, n = 6) increased DSD (2.8 ± 0.3 μeq/min, P < 0.01) and also decreased fractional reabsorption of DSD (67.4 ± 4.5%, P < 0.01), which markedly augmented the natriuresis. In Npr1 gene-duplicated four-copy mice ( n = 6), the lower dose of ANP increased urinary sodium excretion (0.6 ± 0.1 vs. 0.3 ± 0.1 μeq/min, P < 0.05) and decreased fractional reabsorption of DSD compared with control (72.2 ± 3.4%, P < 0.05) at similar mean arterial pressures (91 ± 6 vs. 92 ± 3 mmHg, P > 0.05). These results provide in vivo evidence that ANP-mediated increases in DSD alone exert modest effects on sodium excretion and that inhibition of fractional reabsorption of distal sodium delivery is requisite for the augmented natriuresis in response to the higher dose of ANP or in Npr1 gene-duplicated mice.


1972 ◽  
Vol 42 (6) ◽  
pp. 701-709 ◽  
Author(s):  
B. Lichardus ◽  
A. Nizet

1. The diuretic and natriuretic responses occurring during expansion of blood volume by homologous blood transfusion were studied in homologous kidneys transplanted to the neck of hydropenic dogs that had previously been given deoxycorticosterone acetate and antidiuretic hormone. The experimental conditions ensured constant arterial perfusion pressure, venous pressure, osmotic pressure, haematocrit and plasma oncotic pressure. 2. Moderate but significant increases in urine output, renal sodium excretion, osmotic clearance and tubular sodium rejection fraction were observed; there were no significant changes in glomerular filtration rate, renal blood flow, postglomerular haematocrit and postglomerular plasma protein concentration 20 and 40 min after the end of blood infusion. 3. As the non-hormonal factors known to modulate sodium excretion underwent no significant change, the results are compatible with the proposition that a specific factor (‘natriuretic hormone’) plays a role in the mechanism of natriuresis after blood volume expansion.


2005 ◽  
Vol 388 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Kailash N. PANDEY ◽  
Huong T. NGUYEN ◽  
Renu GARG ◽  
Madan L. KHURANA ◽  
Jude FINK

We have identified a GDAY motif in the C-terminal domain of guanylyl cyclase (guanylate cyclase)/NPRA (natriuretic peptide receptor A) sequence, which serves a dual role as an internalization signal and a recycling signal. To delineate the role of the GDAY motif in receptor internalization and sequestration, we mutated Gly920, Asp921 and Tyr923 to alanine residues (GDAY/AAAA) in the NPRA cDNA sequence. The cDNAs encoding wild-type and mutant receptors were transfected in HEK-293 cells (human embryonic kidney 293 cells). The internalization studies of ligand–receptor complexes revealed that endocytosis of 125I-ANP by HEK-293 cells expressing G920A, Y923A or GDAY/AAAA mutant receptor was decreased by almost 50% (P<0.001) when compared with cells expressing the wild-type receptor. However, the effect of D921A mutation on receptor internalization was minimal. Ligand-mediated down-regulation of G920A, Y923A and GDAY/AAAA mutant receptors was decreased by 35–40% when compared with wild-type NPRA. Subsequently, the recycling of internalized D921A and GDAY/AAAA mutant receptors from the intracellular pool was decreased by more than 40±4% when compared with wild-type NPRA. Recycling of G920A and Y923A mutant receptors was also decreased, but to a significantly lesser extent compared with the D921A or GDAY/AAAA mutant receptors. We conclude that the Gly920 and Tyr923 residues within the GDAY consensus motif are necessary for internalization, and that residue Asp921 is important for recycling of NPRA. The current results provide new evidence for a dual role of the GDAY sequence motif in ligand-mediated internalization, recycling and down-regulation of a single-transmembrane receptor protein NPRA.


1988 ◽  
Vol 255 (3) ◽  
pp. R388-R394 ◽  
Author(s):  
T. V. Peterson ◽  
B. A. Benjamin ◽  
N. L. Hurst

Experiments were performed in conscious macaque monkeys to determine the effect of renal denervation on the diuresis and natriuresis of blood volume expansion. When the kidneys were innervated, expansion of estimated blood volume by 20% with 3% dextran in isotonic saline caused increases in urine flow (V), from 0.28 +/- 0.07 ml/min to a peak response of 1.08 +/- 0.20 ml/min, absolute sodium excretion (UNaV), from 30.0 +/- 11.2 to 99.8 +/- 11.7 mueq/min, and fractional sodium excretion (FENa+), from 1.24 +/- 0.51 to 3.19 +/- 0.56%. The animals then underwent bilateral renal denervation and were volume expanded a second time 6-13 days postdenervation. Under this condition, V increased from 0.32 +/- 0.05 to 0.64 +/- 0.08 ml/min, UNaV, from 22.2 +/- 4.6 to 46.2 +/- 8.0 mueq/min, and FENa+, from 0.91 +/- 0.26 to 1.92 +/- 0.41%, these increases being significantly less than when the kidneys were innervated. These results demonstrate that the renal nerves play an important role in the nonhuman primate in mediating increases in renal excretion during hypervolemia.


2007 ◽  
Vol 31 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Elangovan Vellaichamy ◽  
Di Zhao ◽  
Naveen Somanna ◽  
Kailash N. Pandey

Guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) signaling antagonizes the physiological effects mediated by the renin-angiotensin system (RAS). The objective of this study was to determine whether the targeted-disruption of Npr1 gene (coding for GC-A/NPRA) leads to the activation of cardiac RAS genes involved on the hypertrophic remodeling process. The Npr1 gene-knockout ( Npr1 −/−) mice showed 30–35 mmHg higher systolic blood pressure (SBP) and a 63% greater heart weight-to-body weight (HW/BW) ratio compared with wild-type ( Npr1 +/+) mice. The mRNA levels of both angiotensin-converting enzyme and angiotensin II type 1a receptor were increased by three- and fourfold, respectively, in Npr1 −/− null mutant mice hearts compared with the wild-type Npr1 +/+ mice hearts. In parallel, the expression levels of interleukin-6 and tumor necrosis factor-α were increased by four- to fivefold, in Npr1 −/− mice hearts compared with control animals. The NF-κB binding activity in nuclear extracts of Npr1 −/− mice hearts was increased by fourfold compared with wild-type Npr1 +/+ mice hearts. Treatments with captopril or hydralazine equally attenuated SBP; however, only captopril significantly decreased the HW/BW ratio and suppressed cytokine gene expression in Npr1 −/− mice hearts. The ventricular cGMP level was reduced by almost sixfold in Npr1 −/− mice compared with wild-type control mice. The results of the present study indicate that disruption of NPRA/cGMP signaling leads to the augmented expression of cardiac RAS pathways that promote the development of cardiac hypertrophy and remodeling.


Sign in / Sign up

Export Citation Format

Share Document