natriuretic peptide receptor
Recently Published Documents


TOTAL DOCUMENTS

593
(FIVE YEARS 48)

H-INDEX

51
(FIVE YEARS 3)

Author(s):  
Hailey J Jansen ◽  
Motahareh Moghtadaei ◽  
Sara A Rafferty ◽  
Robert A Rose

Abstract Heart rate is controlled by the sinoatrial node (SAN). SAN dysfunction is highly prevalent in aging; however, not all individuals age at the same rate. Rather, health status during aging is affected by frailty. Natriuretic peptides regulate SAN function in part by activating natriuretic peptide receptor C (NPR-C). The impacts of NPR-C on HR and SAN function in aging and as a function of frailty are unknown. Frailty was measured in aging wildtype (WT) and NPR-C knockout (NPR-C -/-) mice using a mouse clinical frailty index (FI). HR and SAN structure and function were investigated using intracardiac electrophysiology in anesthetized mice, high-resolution optical mapping in intact atrial preparations, histology and molecular biology. NPR-C -/- mice rapidly became frail leading to shortened lifespan. HR and SAN recovery time were increased in older vs. younger mice and this was exacerbated in NPR-C -/- mice; however, there was substantial variability among age groups and genotypes. HR and SAN recovery time were correlated with FI score and fell along a continuum regardless of age or genotype. Optical mapping demonstrates impairments in SAN function that were also strongly correlated with FI score. SAN fibrosis was increased in aged and NPR-C -/- mice and was graded by FI score. Loss of NPR-C results in accelerated aging due to a rapid decline in health status in association with impairments in HR and SAN function. Frailty assessment was effective and often better able to distinguish aging-dependent changes in SAN function in the setting of shorted lifespan due to loss of NPR-C.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Chizuru Sogawa-Fujiwara ◽  
Yasuhiro Fujiwara ◽  
Atsuki Hanagata ◽  
Qunhui Yang ◽  
Taiki Mihara ◽  
...  

Abstract Objective The biological importance for the signaling of C-type natriuretic peptide (CNP) and natriuretic peptide receptor B (NPR-B) has been recognized. However, the details remain unclear and are debatable. The Npr2 is a gene of NPR-B, and we previously reported a unique phenotype of a spontaneous mutant mouse lacking Npr2 (Npr2slw/slw), such as severe ileus-like disorder with bloodless blood vessels. In this study, we analyzed the bloodless mesenteric vascular morphology of Npr2slw/slw by histological observation to clarify the effects of the CNP/NPR-B signal deficiency. Results Blood vessels in the mesentery were clearly dilated in the preweaning Npr2slw/slw mice. Additionally, in the Npr2slw/slw mice, the lacteals were partially dilation or randomly direction mucosal epithelial cells in villi, and mesenteric adipocytes were undeveloped. These findings provide important information for understanding the role of CNP/NPR-B signals on intestine with mesentery.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Zheng Li ◽  
Hao Fan ◽  
Jiacheng Cao ◽  
Guangli Sun ◽  
Sen Wang ◽  
...  

AbstractGastric cancer (GC) ranks the third among global cancer-related mortality, especially in East Asia. Angiogenesis plays an important role in promoting tumor progression, and clinical trials have demonstrated that anti-angiogenesis therapy is effective in GC management. Natriuretic peptide receptor A (NPRA) functions significantly in promoting GC development and progression. Whether NPRA can promote angiogenesis of GC remains unclear. Tumor samples collection and immunohistochemical experiment showed that the expression of NPRA was positively correlated with the expression of CD31 and vessel density. In vivo and in vitro analysis showed that NPRA could promote GC-associated angiogenesis and tumor metastasis. Results of Co-IP/MS showed that NPRA could prevent HIF-1α from being degraded by binding to HIF-1α. Protection of HIF-1α improved VEGF levels and thus promoted angiogenesis. In summary, NPRA protected HIF-1α from proteolysis by binding to HIF-1α, increased the expression of HIF-1α, and promoted GC angiogenesis. This study has discovered a new mechanism for NPRA to promote gastric cancer development and a new regulatory mechanism for HIF-1α.


Author(s):  
Rita M. Ryan ◽  
Manjeet K Paintlia ◽  
Danforth A. Newton ◽  
Demetri D Spyropoulos ◽  
Matthew W. Kemp ◽  
...  

Atrial natriuretic peptide (ANP) and its receptors Natriuretic peptide receptor (NPR)-A and NRP-C are all highly expressed in alveolar epithelial type II cells (AEC2s) in the late gestation ovine fetal lung and are dramatically decreased postnatally. However, of all the components, NPR-C stimulation inhibits ANP-mediated surfactant secretion. Since alveolar oxygen increases dramatically after birth, and steroids are administered to mothers antenatally to enhance surfactant lung maturity, we investigated the effects of O2 concentration and steroids on NPR-C-mediated surfactant secretion in AEC2s. NPR-C expression was highest at 5% O2, while being suppressed by 21% O2, in cultured mouse lung epithelial cells (MLE-15s) and/or human primary AEC2s. Surfactant protein-B (SP-B) was significantly elevated in media from both in vitro and ex-vivo culture at 13% O2 versus 21% O2 in the presence of ANP or terbutaline (TER). Both ANP and C-ANP (an NPR-C agonist) attenuated TER-induced SP-B secretion; this effect was reversed by dexamethasone (DEX) pretreatment in AEC2s and by transfection with NPR-C siRNA in MLE-15 cells. DEX markedly reduced AEC2 NPR-C expression, and pregnant ewes treated with betamethasone showed reduced ANP in fetal sheep lung fluid. These data suggest that elevated O2 downregulates AEC2 NPR-C, and that steroid-mediated NPR-C downregulation in neonatal lungs may provide a novel mechanism for their effect on perinatal surfactant production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kailash N. Pandey

The discovery of atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP) and their cognate receptors has greatly increased our knowledge of the control of hypertension and cardiovascular homeostasis. ANP and BNP are potent endogenous hypotensive hormones that elicit natriuretic, diuretic, vasorelaxant, antihypertrophic, antiproliferative, and antiinflammatory effects, largely directed toward the reduction of blood pressure (BP) and cardiovascular diseases (CVDs). The principal receptor involved in the regulatory actions of ANP and BNP is guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which produces the intracellular second messenger cGMP. Cellular, biochemical, molecular, genetic, and clinical studies have facilitated understanding of the functional roles of natriuretic peptides (NPs), as well as the functions of their receptors, and signaling mechanisms in CVDs. Transgenic and gene-targeting (gene-knockout and gene-duplication) strategies have produced genetically altered novel mouse models and have advanced our knowledge of the importance of NPs and their receptors at physiological and pathophysiological levels in both normal and disease states. The current review describes the past and recent research on the cellular, molecular, genetic mechanisms and functional roles of the ANP-BNP/NPRA system in the physiology and pathophysiology of cardiovascular homeostasis as well as clinical and diagnostic markers of cardiac disorders and heart failure. However, the therapeutic potentials of NPs and their receptors for the diagnosis and treatment of cardiovascular diseases, including hypertension, heart failure, and stroke have just begun to be expanded. More in-depth investigations are needed in this field to extend the therapeutic use of NPs and their receptors to treat and prevent CVDs.


Author(s):  
Esra Kılıç ◽  
Büşranur Çavdarlı ◽  
Gönül Büyükyılmaz ◽  
Mustafa Kılıç

Abstract Objectives Acromesomelic dysplasia, type Maroteaux, is an autosomal recessive skeletal dysplasia caused by biallelic loss of function variations of NPR2, which encodes a cartilage regulator C-type natriuretic peptide receptor B. NPR2 variations impair skeletal growth. It is a rare type of dwarfism characterized by shortening of the middle and distal segments of the limbs with spondylar dysplasia. Methods We performed detailed clinical and radiological evaluation and sequence analysis for NPR2. Results Herein, we report nine patients from eight families with two novel NPR2 pathogenic variants. Conclusions This study describes typical clinical phenotypes of Maroteaux type acromesomelic dysplasia, and enriches the variant spectrum of NPR2 by reporting one nonsense and one missense novel variant. We emphasize the importance of detailed clinical evaluation before genetic testing in diagnosing rare skeletal disorders.


Sign in / Sign up

Export Citation Format

Share Document