scholarly journals Early and prominent alterations in hemodynamics, signaling, and gene expression following renal ischemia in sickle cell disease

2010 ◽  
Vol 298 (4) ◽  
pp. F892-F899 ◽  
Author(s):  
Julio P. Juncos ◽  
Joseph P. Grande ◽  
Anthony J. Croatt ◽  
Robert P. Hebbel ◽  
Gregory M. Vercellotti ◽  
...  

Acute ischemic insults to the kidney are recognized complications of human sickle cell disease (SCD). The present study analyzed in a transgenic SCD murine model the early renal response to acute ischemia. Renal hemodynamics were profoundly impaired following ischemia in sickle mice compared with wild-type mice: glomerular filtration rate, along with renal plasma flow and blood flow rates, were markedly reduced, while renal vascular resistances were increased more than threefold in sickle mice following ischemia. In addition to these changes in renal hemodynamics, there were profound disturbances in renal signaling processes: phosphorylation of members of the MAPK and Akt signaling proteins occurred in the kidney in wild-type mice after ischemia, whereas such phosphorylation did not occur in the kidney in sickle mice after ischemia. ATP content in the postischemic kidney in sickle mice was less than half that observed in wild-type mice. Examination of the expression of candidate genes uncovered changes that may predispose to increased sensitivity of the kidney in sickle mice to ischemia: increased expression of inducible nitric oxide synthase and decreased expression of endothelial nitric oxide synthase, and increased expression of TNF-α. Inducibility of anti-inflammatory, cytoprotective genes, such as heme oxygenase-1 and IL-10, was not impaired in sickle mice after ischemia. We conclude that the kidney in SCD is remarkably vulnerable to acute ischemic insults. We speculate that such sensitivity of the kidney to ischemia in SCD may underlie the occurrence of acute kidney injury in patients with SCD and may set the stage for the emergence of chronic kidney disease in SCD.

2013 ◽  
Vol 58 (12) ◽  
pp. 775-779 ◽  
Author(s):  
Sudhansu Sekhar Nishank ◽  
Mendi Prema Shyam Sunder Singh ◽  
Rajiv Yadav ◽  
Rasik Bihari Gupta ◽  
Vijay Sadashiv Gadge ◽  
...  

Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Katherine C Wood ◽  
Heidi M Schmidt ◽  
Scott Hahn ◽  
Mehdi Nouraie ◽  
Mara Carreno ◽  
...  

Introduction: Stroke and silent infarcts are serious complications of sickle cell disease (SCD), occurring frequently in children. Decreased nitric oxide bioavailability and responsiveness contribute to neurovascular disease. Cytochrome b5 reductase 3 (Cyb5R3) is a heme iron reductase that reduces oxidized soluble guanylate cyclase heme iron (Fe 3+ --> Fe 2+ ) to preserve nitric oxide signaling. A loss-of-function Cyb5R3 missense variant (T117S) occurs with high frequency (0.23 minor allele) in persons of African ancestry. Hypothesis: We hypothesized that impaired reductase function of T117S Cyb5R3 exacerbates brain damage after ischemic stroke in SCD. Methods: Bone marrow transplant was used to create male SCD mice with wild type (SS/WT) or T117S (SS/T117S) Cyb5R3. Blood was sampled before and after middle cerebral artery occlusion (55 minutes occlusion, 48 hours reperfusion). Infarct volume (IV) was determined by 2,3,5-triphenyltetrazolium chloride. Intravascular hemolysis and correlation (Pearson’s R) of hematology changes with IV were determined. Baseline Walk-PHaSST (NCT00492531) data were analyzed for stroke occurrence. Results: Brain IV (63 vs 27 cm 3 , P=0.003) and mortality (3/6 vs 0/8) were greater in SS/T117S vs SS/WT. Red blood cells, hemoglobin and hematocrit declined as IV increased. Plasma oxyhemoglobin increased in parallel with IV (r = 0.74, P=0.09). There were different signatures to hematologic changes that occurred with IV in SCD. Relative to wild type, T117S contracted the erythroid compartment (red blood cell: -13% vs 13%, P=0.003; hematocrit: -20% vs 1%, P=0.008; hemoglobin: -18% vs 2%, P=0.007). Mean platelet volume correlated with IV in SS/T117S (r = 0.87, P=0.06), while the inverse occurred in SS/WT (r = -0.63, P=0.09) Monocytes increased in parallel with IV in SS/T117S (r = 0.73, P=0.16), but followed the opposite trajectory in SS/WT (r = -0.77, P=0.04). WalkPHaSST participants with T117S Cyb5R3 self-reported more ischemic stroke (7.4% vs 5.1%) relative to wild type. Conclusion: Cyb5R3 is an important modifier of the evolution and outcome of ischemic brain injury in SCD and its hematologic consequences. Our findings indicate a bidirectional relationship between stroke and anemia in SCD that may axially turn on Cyb5R3 activity.


Sign in / Sign up

Export Citation Format

Share Document