scholarly journals Increased biological response to 1,25(OH)2D3 in genetic hypercalciuric stone-forming rats

2013 ◽  
Vol 304 (6) ◽  
pp. F718-F726 ◽  
Author(s):  
Kevin K. Frick ◽  
John R. Asplin ◽  
Murray J. Favus ◽  
Christopher Culbertson ◽  
Nancy S. Krieger ◽  
...  

Genetic hypercalciuric stone-forming (GHS) rats, bred to maximize urine (U) calcium (Ca) excretion, have increased intestinal Ca absorption and bone Ca resorption and reduced renal Ca reabsorption, leading to increased UCa compared with the Sprague-Dawley (SD) rats. GHS rats have increased vitamin D receptors (VDR) at each of these sites, with normal levels of 1,25(OH)2D3 (1,25D), indicating that their VDR is undersaturated with 1,25D. We tested the hypothesis that 1,25D would induce a greater increase in UCa in GHS rats by feeding both strains ample Ca and injecting 1,25D (25 ng · 100 g body wt−1 · day−1) or vehicle for 16 days. With 1,25D, UCa in SD increased from 1.7 ± 0.3 mg/day to 24.4 ± 1.2 (Δ = 22.4 ± 1.5) and increased more in GHS from 10.5 ± 0.7 to 41.9 ± 0.7 (Δ = 29.8 ± 1.8; P = 0.003). To determine the mechanism of the greater increase in UCa in GHS rats, we measured kidney RNA expression of components of renal Ca transport. Expression of transient receptor potential vanilloid (TRPV)5 and calbindin D28K were increased similarly in SD + 1,25D and GHS + 1,25D. The Na+/Ca2+ exchanger (NCX1) was increased in GHS + 1,25D. Klotho was decreased in SD + 1,25D and GHS + 1,25D. TRPV6 was increased in SD + 1,25D and increased further in GHS + 1,25D. Claudin 14, 16, and 19, Na/K/2Cl transporter (NKCC2), and secretory K channel (ROMK) did not differ between SD + 1,25D and GHS + 1,25D. Increased UCa with 1,25D in GHS exceeded that of SD, indicating that the increased VDR in GHS induces a greater biological response. This increase in UCa, which must come from the intestine and/or bone, must exceed any effect of 1,25D on TRPV6 or NCX1-mediated renal Ca reabsorption.

2007 ◽  
Vol 98 (3) ◽  
pp. 1662-1674 ◽  
Author(s):  
Vijay Lyall ◽  
Tam-Hao T. Phan ◽  
Shobha Mummalaneni ◽  
Mahdis Mansouri ◽  
Gerard L. Heck ◽  
...  

The effect of nicotine on the benzamil (Bz)-insensitive (transient receptor potential vanilloid-1 variant cation channel, TRPV1t) and the Bz-sensitive (epithelial Na+ channel, ENaC) salt taste receptors and sour taste was investigated by monitoring intracellular Na+ and H+ activity (pHi) in polarized fungiform taste receptor cells (TRCs) and the chorda tympani (CT) nerve responses to NaCl, KCl, and HCl. CT responses in Sprague–Dawley rats and both wildtype and TRPV1 knockout (KO) mice were recorded in the presence and absence of agonists [resiniferatoxin (RTX) and elevated temperature] and an antagonist (SB-366791) of TRPV1t, the ENaC blocker (Bz), and varying apical pH (pHo). At concentrations <0.015 M, nicotine enhanced and at >0.015 M, it inhibited CT responses to KCl and NaCl. Nicotine produced maximum enhancement in the Bz-insensitive NaCl CT response at pHo between 6 and 7. RTX and elevated temperature increased the sensitivity of the CT response to nicotine in salt-containing media, and SB-366791 inhibited these effects. TRPV1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to nicotine, RTX, and elevated temperature. We conclude that nicotine modulates salt responses by direct interaction with TRPV1t. At pHo >8, the apical membrane permeability of nicotine was increased significantly, resulting in increase in TRC pHi and volume, activation of ENaC, and enhancement of the Bz-sensitive NaCl CT response. At pHo >8, nicotine also inhibited the phasic component of the HCl CT response. We conclude that the effects of nicotine on ENaC and the phasic HCl CT response arise from increases in TRC pHi and volume.


Sign in / Sign up

Export Citation Format

Share Document