Faculty Opinions recommendation of The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3.

Author(s):  
Gyongyi Horvath
2006 ◽  
Vol 291 (6) ◽  
pp. R1700-R1707 ◽  
Author(s):  
Chao Qin ◽  
Jay P. Farber ◽  
Kenneth E. Miller ◽  
Robert D. Foreman

The purpose of this study was to examine how upper thoracic spinal neurons responded to activation and desensitization of cardiac transient receptor potential vanilloid-1 (TRPV1)-containing afferent fibers. Extracellular potentials of single T3 spinal neurons were recorded in pentobarbital-anesthetized, paralyzed, and ventilated male rats. To activate cardiac nociceptive receptors, a catheter was placed in the pericardial sac to administer various chemicals: bradykinin (BK; 10 μg/ml, 0.2 ml), capsaicin (CAP, 10 μg/ml, 0.2 ml), or a mixture of algesic chemicals (AC; 0.2 ml) containing adenosine 10−3 M, BK, serotonin, histamine, and PGE2, 10−5 M for each. Spinal neurons that responded to intrapericardial BK and/or CAP were used in this study. Results showed that 81% (35/43) of the neurons had excitatory responses to both intrapericardial BK and CAP, and the remainder responded to either BK or CAP. Intrapericardial resiniferatoxin (RTX) (0.2 μg/ml, 0.2 ml, 1 min), which desensitizes TRPV1-containing nerve endings, abolished excitatory responses to both BK ( n = 8) and CAP ( n = 7), and to AC ( n = 5) but not to somatic stimuli. Intrapericardial capsazepine (1 mg/ml, 0.2 ml, 3 min), a specific antagonist of TRPV1, sharply attenuated excitatory responses to CAP in 5/5 neurons, but responses to BK in 5/5 neurons was maintained. Additionally, intrapericardial capsazepine had no significant effect on excitatory responses to AC in 3/3 neurons. These data indicated that intrapericardial BK-initiated spinal neuronal responses were linked to cardiac TRPV1-containing afferent fibers, but were not dependent on TRPV1. Intraspinal signaling for cardiac nociception was mediated through CAP-sensitive afferent fibers innervating the heart.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Muhammad Azhar Sherkheli ◽  
Guenter Gisselmann ◽  
Hanns Hatt

Transient receptor potential vanilloid subtype 3 (TRPV3) is a thermosensitive ion channel expressed in a variety of neural cells and in keratinocytes. It is activated by warmth (33–39°C), and its responsiveness is dramatically increased at nociceptive temperatures greater than 40°C. Monoterpenoids and 2-APB are chemical activators of TRPV3 channels. We found that Icilin, a known cooling substance and putative ligand of TRPM8, reversibly inhibits TRPV3 activity at nanomolar concentrations in expression systems likeXenopus laevesoocytes, HEK-293 cells, and in cultured human keratinocytes. Our data show that icilin's antagonistic effects for the warm-sensitive TRPV3 ion channel occurs at very low concentrations. Therefore, the cooling effect evoked by icilin may at least in part be due to TRPV3 inhibition in addition to TRPM8 potentiation. Blockade of TRPV3 activity by icilin at such low concentrations might have important implications for overall cooling sensations detected by keratinocytes and free nerve endings in skin. We hypothesize that blockage of TRPV3 might be a signal for cool-sensing systems (like TRPM8) to beat up the basal activity resulting in increased cold perception when warmth sensors (like TRPV3) are shut off.


2008 ◽  
Vol 294 (5) ◽  
pp. G1288-G1298 ◽  
Author(s):  
Walter E. B. Sipe ◽  
Stuart M. Brierley ◽  
Christopher M. Martin ◽  
Benjamin D. Phillis ◽  
Francisco Bautista Cruz ◽  
...  

Protease-activated receptor (PAR2) is expressed by nociceptive neurons and activated during inflammation by proteases from mast cells, the intestinal lumen, and the circulation. Agonists of PAR2 cause hyperexcitability of intestinal sensory neurons and hyperalgesia to distensive stimuli by unknown mechanisms. We evaluated the role of the transient receptor potential vanilloid 4 (TRPV4) in PAR2-induced mechanical hyperalgesia of the mouse colon. Colonic sensory neurons, identified by retrograde tracing, expressed immunoreactive TRPV4, PAR2, and calcitonin gene-related peptide and are thus implicated in nociception. To assess nociception, visceromotor responses (VMR) to colorectal distension (CRD) were measured by electromyography of abdominal muscles. In TRPV4+/+ mice, intraluminal PAR2 activating peptide (PAR2-AP) exacerbated VMR to graded CRD from 6–24 h, indicative of mechanical hyperalgesia. PAR2-induced hyperalgesia was not observed in TRPV4−/− mice. PAR2-AP evoked discharge of action potentials from colonic afferent neurons in TRPV4+/+ mice, but not from TRPV4−/− mice. The TRPV4 agonists 5′,6′-epoxyeicosatrienoic acid and 4α-phorbol 12,13-didecanoate stimulated discharge of action potentials in colonic afferent fibers and enhanced current responses recorded from retrogradely labeled colonic dorsal root ganglia neurons, confirming expression of functional TRPV4. PAR2-AP enhanced these responses, indicating sensitization of TRPV4. Thus TRPV4 is expressed by primary spinal afferent neurons innervating the colon. Activation of PAR2 increases currents in these neurons, evokes discharge of action potentials from colonic afferent fibers, and induces mechanical hyperalgesia. These responses require the presence of functional TRPV4. Therefore, TRPV4 is required for PAR2-induced mechanical hyperalgesia and excitation of colonic afferent neurons.


Sign in / Sign up

Export Citation Format

Share Document