Interaction between neural and nonneural mechanisms controlling renin secretion rate

1984 ◽  
Vol 246 (5) ◽  
pp. F620-F626 ◽  
Author(s):  
U. C. Kopp ◽  
G. F. DiBona

The interaction between the neural and nonneural mechanisms in the control of renin secretion rate was studied in anesthetized vagotomized dogs at renal arterial pressures of 170, 130, 90, and 50 mmHg. Left renal nerves were stimulated (RNS) at either 0.075, 0.3, or 0.7 Hz and the right kidney was denervated. At spontaneous renal arterial pressure RNS at 0.075, 0.3, and 0.7 Hz decreased renal blood flow 0, 1 +/- 0, and 2 +/- 1%, respectively, and urinary sodium excretion 0, 2 +/- 1, and 22 +/- 3%, respectively. RNS at 0.075 Hz augmented renin secretion rate at 50 mmHg by 1,806 +/- 505 ng/min; there was no augmentation at 90, 130, and 170 mmHg. RNS at 0.3 Hz augmented renin secretion rate at 50 and 90 mmHg by 2,635 +/- 824 and 1,197 +/- 289 ng/min, respectively; there was no augmentation at 130 and 170 mmHg. RNS at 0.7 Hz augmented renin secretion rate at 50, 90, and 130 mmHg by 1,421 +/- 287, 747 +/- 172, and 273 +/- 163 ng/min, respectively; there was no augmentation at 170 mmHg. RNS at 0.075 Hz to one kidney and 0.7 Hz to the other kidney in the same dog demonstrated that the renin secretion rate was greater with RNS at 0.7 Hz than with 0.075 Hz at 50 and 90 mmHg but not at 130 and 170 mmHg. We conclude that the nonneural and neural mechanisms interact in the control of renin secretion rate. The degree of interaction depends on the level of renal arterial pressure and the intensity of RNS.

1986 ◽  
Vol 250 (6) ◽  
pp. F999-F1007 ◽  
Author(s):  
U. C. Kopp ◽  
G. F. DiBona

To determine whether the increase in renin secretion rate (RSR) produced by the beta 2-adrenoceptor agonist epinephrine was dependent on intact renal innervation, epinephrine (10 ng X kg-1 X min-1) was infused bilaterally into an innervated and a denervated kidney (ira) of the same anesthetized dog at spontaneous and reduced renal arterial pressure (decreases RAP, 100 mmHg). Epinephrine ira did not affect mean arterial pressure, renal hemodynamics, or urinary sodium excretion of either kidney. At spontaneous RAP epinephrine ira increased RSR from 633 +/- 134 to 926 +/- 137 ng/min in innervated kidneys but did not change RSR in denervated kidneys. decreases RAP in the presence of epinephrine ira resulted in an increase in RSR from 969 +/- 248 to 2,564 +/- 630 ng/min in innervated kidneys, which was greater than that produced in the absence of epinephrine, from 741 +/- 244 to 1,606 +/- 431 ng/min. In denervated kidneys decreases RAP resulted in similar increases in RSR in the absence and presence of epinephrine ira from 41 +/- 15 to 166 +/- 60 ng/min and from 59 +/- 210 to 235 +/- 78 ng/min, respectively. These results demonstrate that the increase in RSR produced by epinephrine is dependent on intact renal innervation at spontaneous and decreases RAP and suggest that epinephrine increases RSR by a prejunctional mechanism. The beta 1-adrenoceptor antagonist metoprolol (0.3-0.5 microgram X kg-1 X min-1 ira) abolished the enhanced RSR response to decreases RAP produced by epinephrine ira. Similarly, the beta 2-adrenoceptor antagonist ICI 118551 (0.005-0.25 microgram X kg-1 X min-1 ira) abolished the enhanced RSR response to decreases RAP produced by epinephrine.(ABSTRACT TRUNCATED AT 250 WORDS)


1984 ◽  
Vol 247 (5) ◽  
pp. F706-F713 ◽  
Author(s):  
J. L. Osborn ◽  
U. C. Kopp ◽  
M. D. Thames ◽  
G. F. DiBona

To examine the interactions among the renal nerves, prostaglandins, and renal arterial pressure in the regulation of renin secretion, experiments using low-frequency renal nerve stimulation (LFRNS; supramaximal voltage, 0.5 ms, 0.5 Hz) were performed in anesthetized dogs. LFRNS, which did not affect renal hemodynamics or urinary sodium excretion, increased renin secretion rate before (79 +/- 16 ng/min) but significantly less after renal arterial administration of indomethacin or meclofenamate (26 +/- 7 ng/min). In a separate group of dogs, LFRNS increased both renin secretion rate (266 +/- 139 ng/min) and renal prostaglandin E2 secretion rate (2,080 +/- 635 ng/min). LFRNS does not alter input stimuli to the renal vascular baroreceptor or tubular macula densa receptor mechanisms for renin secretion and represents a direct neural stimulus for renin secretion; this also increases renal prostaglandin E2 secretion rate, which contributes to the increase in renin secretion rate. The renin secretion rate response of innervated and denervated kidneys to reduction in renal arterial pressure to 50 mmHg was examined before and after indomethacin/meclofenamate administration. The observation that indomethacin/meclofenamate decreased but did not abolish the renin secretion rate response to aortic constriction in innervated kidneys suggests the presence of a prostaglandin-independent mechanism that is mediated by an interaction between the renal nerves and the tubular macula densa receptor, as indomethacin/meclofenamate essentially abolished the renin secretion rate response to aortic constriction in denervated kidneys.


1984 ◽  
Vol 246 (1) ◽  
pp. F67-F77 ◽  
Author(s):  
U. C. Kopp ◽  
L. A. Olson ◽  
G. F. DiBona

The renal functional effects of renal mechano- (MR) and chemoreceptor (CR) stimulation were examined in dogs and rats. In dogs increasing ureteral pressure (increases UP) increased ipsilateral (ipsi) renal blood flow and renin secretion rate, decreased contralateral (contra) renal blood flow, but did not affect contra renal excretion or renin secretion rate. Increasing renal venous pressure (increases RVP) increased ipsi renin secretion rate but did not affect contra renal function. Retrograde ureteropelvic perfusion with 0.9 M NaCl at unchanged UP did not affect either ipsi or contra renal function. In rats,increases UP and retrograde ureteropelvic perfusion with 0.9 M NaCl at unchanged UP did not affect mean arterial pressure, heart rate, contra renal blood flow, or glomerular filtration rate but increased contra urine flow rate and urinary sodium excretion. Increasing ureteral pressure with 0.1 M NaCl increased contra urine flow rate and urinary sodium excretion, whereas retrograde ureteropelvic perfusion with 0.1 M NaCl was without effect. Thus increases UP and retrograde ureteropelvic perfusion with 0.9 M NaCl stimulated renal MR and CR, respectively. The contra diuretic and natriuretic responses to renal MR and CR stimulation were abolished by either ipsi or contra renal denervation. Renal MR and CR stimulation increased ipsi afferent renal nerve activity (RNA) and decreased contra efferent RNA. These results indicate that in dogs renal MR stimulation results in a modest contralateral excitatory renorenal reflex, whereas in rats renal MR and CR stimulation produce a contralateral inhibitory renorenal reflex.


1983 ◽  
Vol 244 (4) ◽  
pp. F418-F424 ◽  
Author(s):  
U. Kopp ◽  
G. F. DiBona

Anesthetized dogs with isolated carotid sinus preparation were used to examine the mechanisms involved in the increase in renin secretion rate produced by carotid baroreceptor reflex renal nerve stimulation (RNS) at constant renal perfusion pressure. Lowering carotid sinus pressure by 41 +/- 5 mmHg for 10 min increased mean arterial pressure and heart rate, caused no or minimal renal hemodynamic changes, decreased urinary sodium excretion, and increased renin secretion rate. Metoprolol, a beta 1-adrenoceptor antagonist, given in the renal artery, did not affect the decrease in urinary sodium excretion but attenuated the increase in renin secretion rate, from 1,764 +/- 525 to 412 +/- 126 ng/min (70 +/- 8%). Indomethacin or meclofenamate, prostaglandin synthesis inhibitors, did not affect the decrease in urinary sodium excretion but attenuated the increase in renin secretion rate, from 1,523 +/- 416 to 866 +/- 413 ng/min (51 +/- 18%). Addition of metoprolol to indomethacin-pretreated dogs attenuated the increase in renin secretion rate from 833 +/- 327 to 94 +/- 60 ng/min (86 +/- 10%). These results indicate that reflex RNS at constant renal perfusion pressure results in an increase in renin secretion rate that is largely mediated by renal beta 1-adrenoceptors and is partly dependent on intact renal prostaglandin synthesis. The beta 1-adrenoceptor-mediated increase in renin secretion rate is independent of and not in series with renal prostaglandins.


1985 ◽  
Vol 69 (2) ◽  
pp. 185-195 ◽  
Author(s):  
Edward J. Johns

1. Experiments were undertaken in pentobarbitone-anaesthetized cats to determine how reflex activation of the renal nerves altered the responsiveness of the kidney to release renin during reductions in renal perfusion pressure. Reflex activation of the renal nerves was achieved by reducing carotid sinus perfusion pressure by 30 mmHg, which increased systemic blood pressure. During this period renal perfusion pressure was regulated at control levels and neither renal blood flow nor glomerular filtration rate changed, but there was a significant decrease in sodium excretion and increase in renin secretion. Renal denervation abolished both these latter responses. 2. Renal perfusion pressure reduction, by 25-30 mmHg, had no effect on renal blood flow or glomerular filtration rate but significantly decreased sodium excretion and increased renin secretion. Simultaneous reduction of carotid sinus and renal perfusion pressures had no effect on renal blood flow or glomerular filtration rate, decreased sodium excretion, and the magnitude of the increase in renin secretion was significantly greater than that obtained with reduction in renal perfusion pressure alone. Renal denervation abolished the increase in renin secretion during these manoeuvres. 3. During atenolol administration, renal haemodynamics and sodium excretion responses to renal pressure reduction were similar to those obtained in the absence of the drug. Renin secretion was increased, but significantly less than in the absence of atenolol. Simultaneous carotid sinus and renal pressure reductions during atenolol administration had no effect on renal haemodynamics, reduced sodium excretion and increased renin secretion, the magnitude of which was significantly greater than that recorded with only renal pressure reduction in the presence of atenolol. 4. Direct electrical stimulation of the renal nerves, at frequencies which caused a 5-10% reduction in renal blood flow, did not change glomerular filtration rate, decreased sodium excretion by 30% and increased the rate of renin secretion twofold. In the presence of atenolol, such renal nerve stimulation reduced renal blood flow to the same degree, did not change filtration rate, decreased sodium excretion by 37% but did not change renin secretion. 5. These results show that the magnitude of the release of renin in response to renal pressure reduction is dependent on activity within the renal nerves, being blunted after denervation, and enhanced during reflex activation of the renal nerves.


1982 ◽  
Vol 242 (6) ◽  
pp. F620-F626 ◽  
Author(s):  
J. L. Osborn ◽  
G. F. DiBona ◽  
M. D. Thames

The increase in renin secretion resulting from low-frequency renal nerve stimulation (0.5 Hz) occurs in the absence of changes in urinary sodium excretion or renal blood flow and is apparently derived from a direct effect of renal sympathetic nerves on juxtaglomerular granular cells. We sought to determine the role of renal alpha-adrenoceptors in this neurally evoked renin secretion. The neurally evoked renin secretion was unaffected by renal alpha-adrenoceptor blockade with phentolamine or prazosin; however, two dose levels of phenoxybenzamine equally inhibited the renin secretion. The renal vasoconstrictor response to graded renal nerve stimulation was similarly diminished by phentolamine, prazosin, and the higher phenoxybenzamine dose, whereas the lower phenoxybenzamine dose was significantly less effective. Renal alpha-adrenoceptor stimulation with methoxamine infusion at doses that were just subthreshold for altering renal blood flow and urinary sodium excretion or at doses that just reduced urinary sodium excretion also did not change renin secretion. Higher doses of methoxamine that decreased both renal blood flow and sodium excretion increased renin secretion. Based on the inability of phentolamine and prazosin to prevent neurally mediated renin secretion and on the dose-response relationship between methoxamine and changes in renin secretion, renal blood flow, and urinary sodium excretion, we conclude that renal alpha-adrenoceptors do not mediate renin secretion elicited by direct neural activation of the juxtaglomerular granular cells. The data suggest that phenoxybenzamine inhibits neurally mediated renin secretion by a mechanism other than renal alpha-adrenoceptor blockade.


1996 ◽  
Vol 271 (6) ◽  
pp. R1489-R1499 ◽  
Author(s):  
S. C. Malpas ◽  
A. Shweta ◽  
W. P. Anderson ◽  
G. A. Head

Changes in renal sympathetic nerve activity (SNA) are postulated to influence renal function in selective ways, such that different levels of activation produce particular renal responses, initially in renin release, then sodium excretion, with changes in renal hemodynamics occurring only with much greater stimulus intensities. The aim of this study was to determine the renal hemodynamic and excretory responses to graded physiological increases in renal SNA induced by breathing different hypoxic gas mixtures. Experiments were performed in seven conscious rabbits subjected to four gas mixtures (14% O2, 10% O2, 10% O2 + 3% CO2, and 10% O2 + 5% CO2) and instrumented for recording of renal nerve activity. After a 30-min control period, rabbits were subjected to one of the four gas mixtures for 30 min, and then room air was resumed for a further 30 min. The four gas mixtures increased renal SNA by 14, 38, 49, and 165% respectively, but arterial pressure (thus renal perfusion pressure) was not altered by any of the gas mixtures. The greatest level of sympathetic activation produced significant falls in glomerular filtration rate (GFR), renal blood flow, sodium and fluid excretion, and significant increases in plasma renin activity. These returned to levels not significantly different from control conditions in the 30-min period after the gas mixture. When the changes to the various gas mixtures were analyzed within each rabbit, a significant linear relationship was found with all variables to the increase in SNA. Renal denervation in a separate group of seven rabbits completely abolished all of the above responses to the different gas mixtures. Thus graded activation of renal nerves induced by changes in inspired gas mixtures resulted in graded decreases in renal blood flow, GFR, and sodium excretion and graded increases in renin activity, with the changes occurring across a similar range of nerve activities; there was no evidence for a selective change in any renal variable.


1987 ◽  
Vol 252 (1) ◽  
pp. F91-F98
Author(s):  
R. D. Manning

The effects of long-term hypoproteinemia on renal hemodynamics, arterial pressure, and fluid volume were studied in eight conscious dogs over a 34-day period. Plasma protein concentration (PPC) was decreased by daily plasmapheresis, and the effects of decreasing and increasing sodium intake were measured. By the 12th day of plasmapheresis, during which sodium intake was 30 meq/day, PPC had decreased to 2.5 g/dl from a control value of 7.2 g/dl, mean arterial pressure had decreased to 78% of control, glomerular filtration rate (GFR) was 75.2% of control, and urinary sodium excretion was decreased. By day 18 of plasmapheresis, estimated renal plasma flow (ERPF) was decreased to 60% of control due to the decreased arterial pressure and an increase in renal vascular resistance. Also, plasma renin activity and plasma aldosterone concentration were both increased, and the relationship between mean arterial pressure and urinary sodium excretion was distinctly shifted to the left along the arterial pressure axis. In contradistinction to acute experiments, chronic hypoproteinemia results in decreases in GFR, ERPF, and urinary sodium excretion and has marked effects on both fluid volume and arterial pressure regulation.


2015 ◽  
Vol 26 (12) ◽  
pp. 2953-2962 ◽  
Author(s):  
Matthew A. Sparks ◽  
Johannes Stegbauer ◽  
Daian Chen ◽  
Jose A. Gomez ◽  
Robert C. Griffiths ◽  
...  

1998 ◽  
Vol 274 (5) ◽  
pp. R1283-R1294 ◽  
Author(s):  
Simon C. Malpas ◽  
Roger G. Evans ◽  
Geoff A. Head ◽  
Elena V. Lukoshkova

We have examined the role of the renal sympathetic nerves in the renal blood flow (RBF) response to hemorrhage in seven conscious rabbits. Hemorrhage was produced by blood withdrawal at 1.35 ml ⋅ min−1 ⋅ kg−1for 20 min while RBF and renal sympathetic nerve activity (RSNA) were simultaneously measured. Hemorrhage was associated with a gradual increase in RSNA and decrease in RBF from the 4th min. In seven denervated animals, the resting RBF before hemorrhage was significantly greater (48 ± 1 vs. 31 ± 1 ml/min intact), and the decrease in RBF did not occur until arterial pressure also began to fall (8th min); however, the overall percentage change in RBF by 20 min of blood withdrawal was similar. Spectral analysis was used to identify the nature of the oscillations in each variable. Before hemorrhage, a rhythm at ∼0.3 Hz was observed in RSNA, although not in RBF, whose spectrogram was composed mostly of lower-frequency (<0.25 Hz) components. The denervated group of rabbits had similar frequency spectrums for RBF before hemorrhage. RSNA played a role in dampening the effect of oscillations in arterial pressure on RBF as the transfer gain between mean arterial pressure (MAP) and RBF for frequencies >0.25 Hz was significantly less in intact than denervated rabbits (0.83 ± 0.12 vs. 1.19 ± 0.10 ml ⋅ min−1 ⋅ mmHg−1). Furthermore, the coherence between MAP and RBF was also significantly higher in denervated rabbits, suggesting tighter coupling between the two variables in the absence of RSNA. Before the onset of significant decreases in arterial pressure (up to 10 min), there was an increase in the strength of oscillations centered around 0.3 Hz in RSNA. These were accompanied by increases in the spectral power of RBF at the same frequency. As arterial pressure fell in both groups of animals, the dominant rhythm to emerge in RBF was centered between 0.15 and 0.20 Hz and was present in intact and denervated rabbits. It is speculated that this is myogenic in origin. We conclude that RSNA can induce oscillations in RBF at 0.3 Hz, plays a significant role in altering the effect of oscillations in arterial pressure on RBF, and mediates a proportion of renal vasoconstriction during hemorrhage in conscious rabbits.


Sign in / Sign up

Export Citation Format

Share Document