adrenoceptor antagonist
Recently Published Documents


TOTAL DOCUMENTS

935
(FIVE YEARS 36)

H-INDEX

53
(FIVE YEARS 2)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262263
Author(s):  
Yoichiro Kitajima ◽  
Nana Sato Hashizume ◽  
Chikako Saiki ◽  
Ryoji Ide ◽  
Toshio Imai

Purpose We examined the cardiorespiratory effect of dexmedetomidine, an α2- adrenoceptor/imidazoline 1 (I1) receptor agonist, in spontaneously breathing adult rats. Methods Male rats (226−301 g, n = 49) under isoflurane anesthesia had their tail vein cannulated for drug administration and their tail artery cannulated for analysis of mean arterial pressure (MAP), pulse rate (PR), and arterial blood gases (PaO2, PaCO2, pH). After recovery, one set of rats received normal saline for control recording and was then divided into three experimental groups, two receiving dexmedetomidine (5 or 50 μg·kg−1) and one receiving normal saline (n = 7 per group). Another set of rats was divided into four groups receiving dexmedetomidine (50 μg·kg−1) followed 5 min later by 0.5 or 1 mg∙kg−1 atipamezole (selective α2-adrenoceptor antagonist) or efaroxan (α2-adrenoceptor/I1 receptor antagonist) (n = 6 or 8 per group). Recordings were performed 15 min after normal saline or dexmedetomidine administration. Results Compared with normal saline, dexmedetomidine (5 and 50 μg·kg−1) decreased respiratory frequency (fR, p = 0.04 and < 0.01, respectively), PR (both p < 0.01), and PaO2 (p = 0.04 and < 0.01), and increased tidal volume (both p = 0.049). Dexmedetomidine at 5 μg·kg−1 did not significantly change minute ventilation (V′E) (p = 0.87) or MAP (p = 0.24), whereas dexmedetomidine at 50 μg·kg−1 significantly decreased V′E (p = 0.03) and increased MAP (p < 0.01). Only dexmedetomidine at 50 μg·kg−1 increased PaCO2 (p < 0.01). Dexmedetomidine (5 and 50 μg·kg−1) significantly increased blood glucose (p < 0.01), and dexmedetomidine at 50 μg·kg−1 increased hemoglobin (p = 0.04). Supplemental atipamezole or efaroxan administration similarly prevented the 50 μg·kg−1 dexmedetomidine-related cardiorespiratory changes. Principal conclusion These results suggest that dexmedetomidine-related hypoventilation and hypertension are observed simultaneously and occur predominantly through activation of α2-adrenoceptors, but not I1 receptors, in spontaneously breathing adult rats.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1355
Author(s):  
Abigail Boyd ◽  
Ileana Aragon ◽  
Justin Rich ◽  
Will McDonough ◽  
Marianna Oditt ◽  
...  

Treatment with PAN-PDE4 inhibitors has been shown to produce hypothermia in multiple species. Given the growing body of evidence that links nausea and emesis to disturbances in thermoregulation in mammals, we explored PDE4 inhibitor-induced hypothermia as a novel correlate of nausea in mice. Using knockout mice for each of the four PDE4 subtypes, we show that selective inactivation of individual PDE4 subtypes per se does not produce hypothermia, which must instead require the concurrent inactivation of multiple (at least two) PDE4 subtypes. These findings contrast with the role of PDE4s in shortening the duration of α2-adrenoceptor-dependent anesthesia, a behavioral surrogate previously used to assess the emetic potential of PDE4 inhibitors, which is exclusively affected by inactivation of PDE4D. These different outcomes are rooted in the distinct molecular mechanisms that drive these two paradigms; acting as a physiologic α2-adrenoceptor antagonist produces the effect of PDE4/PDE4D inactivation on the duration of α2-adrenoceptor-dependent anesthesia, but does not mediate the effect of PDE4 inhibitors on body temperature in mice. Taken together, our findings suggest that selective inhibition of any individual PDE4 subtype, including inhibition of PDE4D, may be free of nausea and emesis.


Author(s):  
Metin Ocak ◽  
Halil Çetinkaya ◽  
Hüseyin Kesim

β-Blockers are prescribed by physicians for many medical reasons (hypertension, long-term prophylaxis of angina pectoris, myocardial infarction, stable heart failure treatment, cardiac arrhythmias, etc.). Although cases of β-blocker poisoning have a low rate of 0.9% among all poisoning cases, they have a high mortality rate. In β-blocker poisoning with high lipid solubility; seizures, respiratory depression, coma, resistant bradycardia-hypotension and shock may occur. Metoprolol, a type of β-blocker, is a selective β1-adrenoceptor antagonist with sympathomimetic effect. It is also reported that metoprolol is the 2nd most commonly prescribed β-blocker after bisoprolol all over the world. This article aims to present a case who took high-dose metoprolol for suicidal purposes and to examine metoprolol poisoning and its treatment in the light of current literature.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jialing Guo ◽  
Daniel Min ◽  
Hua-Jun Feng

Objective: Sudden unexpected death in epilepsy (SUDEP) is a fatal event that ranks second in years of potential life lost among neurological disorders. Seizure-induced respiratory arrest (S-IRA) is the primary instigator leading to death in many SUDEP cases. However, there are currently no effective preventive strategies against S-IRA other than the seizure control. Therefore, it is critical to develop new avenues to prevent SUDEP by investigating the pharmacological interventions of S-IRA. In the present study, we examined the effect of genistein, an isoflavone found in various dietary vegetables, on the incidence of S-IRA in DBA/1 mice.Methods: DBA/1 mice exhibited generalized seizures and S-IRA when subjected to acoustic stimulation. Genistein was intraperitoneally administered alone or in combination with an adrenoceptor antagonist and a serotonin (5-HT) receptor antagonist, respectively. The effects of drug treatments on S-IRA incidence and seizure behaviors were examined.Results: The incidence of S-IRA in DBA/1 mice was significantly reduced 2 h after injection of genistein at 1–90 mg/kg as compared with that in the vehicle control. Genistein could block S-IRA without interfering with any component of seizures, especially at relatively lower dosages. The S-IRA-suppressing effect of genistein was reversed by an α2 adrenoceptor antagonist but was not altered by an α1 antagonist. The inhibitory effect of genistein on S-IRA was not affected by a 5-HT3 or 5-HT2A receptor antagonist.Significance: Our data show that genistein reduces S-IRA incidence and can specifically block S-IRA in DBA/1 mice. Its suppressing effect on S-IRA is dependent on activating α2 adrenoceptors. Our study suggests that genistein, a dietary supplement, is potentially useful to prevent SUDEP in at-risk patients.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Valentina Krenz ◽  
Tobias Sommer ◽  
Arjen Alink ◽  
Benno Roozendaal ◽  
Lars Schwabe

AbstractIt is commonly assumed that episodic memories undergo a time-dependent systems consolidation process, during which hippocampus-dependent memories eventually become reliant on neocortical areas. Here we show that systems consolidation dynamics can be experimentally manipulated and even reversed. We combined a single pharmacological elevation of post-encoding noradrenergic activity through the α2-adrenoceptor antagonist yohimbine with fMRI scanning both during encoding and recognition testing either 1 or 28 days later. We show that yohimbine administration, in contrast to placebo, leads to a time-dependent increase in hippocampal activity and multivariate encoding-retrieval pattern similarity, an indicator of episodic reinstatement, between 1 and 28 days. This is accompanied by a time-dependent decrease in neocortical activity. Behaviorally, these neural changes are linked to a reduced memory decline over time after yohimbine intake. These findings indicate that noradrenergic activity shortly after encoding may alter and even reverse systems consolidation in humans, thus maintaining vividness of memories over time.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Katrin Altosaar ◽  
Poornima Balaji ◽  
Richard A. Bond ◽  
David B. Bylund ◽  
Susanna Cotecchia ◽  
...  

The nomenclature of the Adrenoceptors has been agreed by the NC-IUPHAR Subcommittee on Adrenoceptors [60, 186]. Adrenoceptors, α1 The three α1-adrenoceptor subtypes α1A, α1B and α1D are activated by the endogenous agonists (-)-adrenaline and (-)-noradrenaline. -(-)phenylephrine, methoxamine and cirazoline are agonists and prazosin and doxazosin antagonists considered selective for α1- relative to α2-adrenoceptors. [3H]prazosin and [125I]HEAT (BE2254) are relatively selective radioligands. S(+)-niguldipine also has high affinity for L-type Ca2+ channels. Fluorescent derivatives of prazosin (Bodipy FLprazosin- QAPB) are used to examine cellular localisation of α1-adrenoceptors. α1-Adrenoceptor agonists are used as nasal decongestants; antagonists to treat symptoms of benign prostatic hyperplasia (alfuzosin, doxazosin, terazosin, tamsulosin and silodosin, with the last two compounds being α1A-adrenoceptor selective and claiming to relax bladder neck tone with less hypotension); and to a lesser extent hypertension (doxazosin, terazosin). The α1- and β2-adrenoceptor antagonist carvedilol is used to treat congestive heart failure, although the contribution of α1-adrenoceptor blockade to the therapeutic effect is unclear. Several anti-depressants and anti-psychotic drugs are α1-adrenoceptor antagonists contributing to side effects such as orthostatic hypotension. Adrenoceptors, α2 The three α2-adrenoceptor subtypes α2A, α2B and α2C are activated by (-)-adrenaline and with lower potency by (-)-noradrenaline. brimonidine and talipexole are agonists and rauwolscine and yohimbine antagonists selective for α2- relative to α1-adrenoceptors. [3H]rauwolscine, [3H]brimonidine and [3H]RX821002 are relatively selective radioligands. There are species variations in the pharmacology of the α2A-adrenoceptor. Multiple mutations of α2-adrenoceptors have been described, some associated with alterations in function. Presynaptic α2-adrenoceptors regulate many functions in the nervous system. The α2-adrenoceptor agonists clonidine, guanabenz and brimonidine affect central baroreflex control (hypotension and bradycardia), induce hypnotic effects and analgesia, and modulate seizure activity and platelet aggregation. clonidine is an anti-hypertensive (relatively little used) and counteracts opioid withdrawal. dexmedetomidine (also xylazine) is increasingly used as a sedative and analgesic in human [31] and veterinary medicine and has sympatholytic and anxiolytic properties. The α2-adrenoceptor antagonist mirtazapine is used as an anti-depressant. The α2B subtype appears to be involved in neurotransmission in the spinal cord and α2C in regulating catecholamine release from adrenal chromaffin cells. Although subtype-selective antagonists have been developed, none are used clinically and they remain experimental tools. Adrenoceptors, β The three β-adrenoceptor subtypes β1, β2 and β3 are activated by the endogenous agonists (-)-adrenaline and (-)-noradrenaline. Isoprenaline is selective for β-adrenoceptors relative to α1- and α2-adrenoceptors, while propranolol (pKi 8.2-9.2) and cyanopindolol (pKi 10.0-11.0) are relatively selective antagonists for β1- and β2- relative to β3-adrenoceptors. (-)-noradrenaline, xamoterol and (-)-Ro 363 show selectivity for β1- relative to β2-adrenoceptors. Pharmacological differences exist between human and mouse β3-adrenoceptors, and the 'rodent selective' agonists BRL 37344 and CL316243 have low efficacy at the human β3-adrenoceptor whereas CGP 12177 (low potency) and L 755507 activate human β3-adrenoceptors [88]. β3-Adrenoceptors are resistant to blockade by propranolol, but can be blocked by high concentrations of bupranolol. SR59230A has reasonably high affinity at β3-adrenoceptors, but does not discriminate between the three β- subtypes [320] whereas L-748337 is more selective. [125I]-cyanopindolol, [125I]-hydroxy benzylpindolol and [3H]-alprenolol are high affinity radioligands that label β1- and β2- adrenoceptors and β3-adrenoceptors can be labelled with higher concentrations (nM) of [125I]-cyanopindolol together with β1- and β2-adrenoceptor antagonists. Fluorescent ligands such as BODIPY-TMR-CGP12177 can be used to track β-adrenoceptors at the cellular level [8]. Somewhat selective β1-adrenoceptor agonists (denopamine, dobutamine) are used short term to treat cardiogenic shock but, chronically, reduce survival. β1-Adrenoceptor-preferring antagonists are used to treat cardiac arrhythmias (atenolol, bisoprolol, esmolol) and cardiac failure (metoprolol, nebivolol) but also in combination with other treatments to treat hypertension (atenolol, betaxolol, bisoprolol, metoprolol and nebivolol) [507]. Cardiac failure is also treated with carvedilol that blocks β1- and β2-adrenoceptors, as well as α1-adrenoceptors. Short (salbutamol, terbutaline) and long (formoterol, salmeterol) acting β2-adrenoceptor-selective agonists are powerful bronchodilators used to treat respiratory disorders. Many first generation β-adrenoceptor antagonists (propranolol) block both β1- and β2-adrenoceptors and there are no β2-adrenoceptor-selective antagonists used therapeutically. The β3-adrenoceptor agonist mirabegron is used to control overactive bladder syndrome. There is evidence to suggest that β-adrenoceptor antagonists can reduce metastasis in certain types of cancer [189].


2021 ◽  
Vol 12 ◽  
Author(s):  
Leandro A. Oliveira ◽  
Taciana R. S. Pollo ◽  
Elinéia A. Rosa ◽  
Josiane O. Duarte ◽  
Carlos H. Xavier ◽  
...  

The prelimbic (PL) and infralimbic (IL) subareas of the medial prefrontal cortex (mPFC) have been implicated in physiological and behavioral responses during aversive threats. The previous studies reported the noradrenaline release within the mPFC during stressful events, and the lesions of catecholaminergic terminals in this cortical structure affected stress-evoked local neuronal activation. Nevertheless, the role of mPFC adrenoceptors on cardiovascular responses during emotional stress is unknown. Thus, we investigated the role of adrenoceptors present within the PL and IL on the increase in both arterial pressure and heart rate (HR) and on the sympathetically mediated cutaneous vasoconstriction evoked by acute restraint stress. For this, bilateral guide cannulas were implanted into either the PL or IL of male rats. All animals were also subjected to catheter implantation into the femoral artery for cardiovascular recording. The increase in both arterial pressure and HR and the decrease in the tail skin temperature as an indirect measurement of sympathetically mediated cutaneous vasoconstriction were recorded during the restraint session. We observed that the microinjection of the selective α2-adrenoceptor antagonist RX821002 into either the PL or IL decreased the pressor response during restraint stress. Treatment of the PL or IL with either the α1-adrenoceptor antagonist WB4101 or the α2-adrenoceptor antagonist reduced the restraint-evoked tachycardia. The drop in the tail skin temperature was decreased by PL treatment with the β-adrenoceptor antagonist propranolol and with the α1- or α2-adrenoceptor antagonists. The α2-adrenoceptor antagonist into the IL also decreased the skin temperature response. Our results suggest that the noradrenergic neurotransmission in both PL and IL mediates the cardiovascular responses to aversive threats.


2021 ◽  
Vol 14 (02) ◽  
pp. 733-738
Author(s):  
Balakrishnan Sadasivam ◽  
Santenna Chenchula ◽  
Avik Ray

Introduction: Urolithiasis is quite a common disorder affecting around two million people in India every year. Minimally invasive therapies are effective treatment measures in most of the cases. However, a watchful waiting approach with pharmacotherapy promotes the expulsion of stones in a shorter time. We hereby review the efficacy and safety of silodosin, a selective α-1A adrenoceptor antagonist, in medical expulsive therapy for the management of urolithiasis based on the evidences in Indian population. Methods: Medical Subject Headings (MeSH) keywords which were used to systematically search electronic databases: PubMed/Medline, Cochrane Library and Google Scholar from their inception to February 2020 were “Silodosin”, “Ureteral calculi”, “Medical expulsive therapy”, “India”, “randomised controlled trials” and “prospective observational studies”. A total of 29 relevant studies could be found and were included in our analysis. Results: The primary outcomes considered were the stone expulsion rate (SER) and stone expulsion time (SET) along with pain episodes and safety outcomes like orthostatic hypotension and retrograde ejaculation. Eight studies with a total of 1064 patients were identified as evidences considering Indian population which compared silodosin with controls like tamsulosin or tadalafil. Conclusions: Silodosin is highly effective in Indian population for increasing stone expulsion for those with ureteral stones (distal ureteral stones with diameter ≥5 mm and ≤10 mm) with shorter expulsion times along with fewer episodes of pain. It is also effective in post-lithotripsy for accentuating clearance rate and curtailing time to passage of the stones.


Author(s):  
Anthony J. DeSantis ◽  
Garrett A. Enten ◽  
Xianlong Gao ◽  
Matthias Majetschak

Abstract Objectives Chemokine receptor antagonists are being explored for their therapeutic potential in various disease processes. As the chemokine (C–C motif) receptor 2 (CCR2) antagonist RS504393 is known to compete with ligand binding to α1-adrenoceptors, we tested a panel of 10 CCR antagonists for interactions with α1-adrenoceptors to evaluate potential cardiovascular activities and side-effect profiles. Methods The PRESTO-Tango β-arrestin recruitment assay was utilized to test whether the CCR antagonists interfere with α1b-AR activation upon stimulation with phenylephrine. Pressure myography with isolated rat resistance arteries was employed to assess their effects on phenylephrine-induced vasoconstriction. The following antagonists were tested: CCR1–BX471, BX513, BI639667; CCR2–RS504393, INCB3284; CCR3–SB328437; and CCR4–AZD2098, and C021; CCR5–Maraviroc; CCR10-BI6901. The pan-α1-adrenoceptor antagonist prazosin was used as control. Results Among the CCR antagonists tested, RS504393, BX513, and C021 inhibited phenylephrine-induced β-arrestin recruitment to α1b-adrenoceptor and phenylephrine-induced vasoconstriction. While RS504393 functioned as a competitive α1-adrenoceptor blocker, BX513 and C021 functioned as noncompetitive α1-adrenoceptor antagonists in both assay systems. Furthermore, RS504393, BX513, and C021 dose-dependently dilated arteries that were fully preconstricted with phenylephrine. Conclusions Our data suggest that CCR antagonists should be screened for cross-reactivity with α1-adrenoceptors to exclude potential adverse cardiovascular effects when used as anti inflammatory drugs.


2021 ◽  
Vol 14 (5) ◽  
pp. 477
Author(s):  
Monika Kubacka ◽  
Szczepan Mogilski ◽  
Monika Zadrożna ◽  
Barbara Nowak ◽  
Małgorzata Szafarz ◽  
...  

Background: Quinazoline α1-adrenoceptors antagonists have been shown to exert moderately favorable effects on the metabolic profile in hypertensive patients. However, based on AntiHypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) results, they are no longer recommended as a first line therapy of hypertension. Recent studies have shown that quinazoline-based α1-adrenoceptors antagonists (prazosin, doxazosin) induce the apoptosis and necrosis, which may be responsible for ALLHAT outcomes; however, these effects were proven to be independent of α1-adrenoceptor blockade and were associated with the presence of quinazoline moiety. MH-76 (1-[3-(2,6-dimethylphenoxy)propyl]-4-(2-methoxyphenyl)piperazine hydrochloride)) is a non-quinazoline α1-adrenoceptor antagonist which, in fructose-fed rats, exerted antihypertensive effect, and, contrary to prazosin, reduced insulin resistance and abdominal adiposity. In this study we aimed to further investigate and compare the effects of MH-76 and prazosin on inflammation in adipose tissue of fructose-fed rats. Methods: Abdominal adipose tissue was collected from four groups of fructose-fed rats (Control, Fructose, Fructose + MH-76 and Fructose + Prazosin) and subjected to biochemical, histopathological and immunohistochemical studies. Moreover, selected tissue distribution studies were performed. Results: Treatment with MH-76 but not with prazosin improved endothelial integrity, reduced adipose tissue inflammation and infiltration by immune cells, resulting in lowering leptin, MCP-1, IL-6, TNF-α and PAI-1 levels. In adipose tissue from Fructose + MH-76 animals, a higher amount of eosinophils accompanied with higher IL-4 concentration was observed. Treatment with MH-76 but not with prazosin markedly reduced phosphorylation of IRS-1 at Ser307. Conclusion: MH-76 may improve insulin signaling in adipose tissue by reducing the pro-inflammatory cytokine production and inhibiting the inflammatory cells recruitment. In contrast, in adipose tissue from animals treated with prazosin, the inflammatory effect was clearly enhanced.


Sign in / Sign up

Export Citation Format

Share Document