Antagonistic effect of theophylline on the adenosine-induced decreased in renin release

1984 ◽  
Vol 247 (2) ◽  
pp. F246-F251 ◽  
Author(s):  
W. S. Spielman

The action of theophylline on the adenosine-induced decrease in renin release was studied in anesthetized dogs. Adenosine inhibited renin release, decreased GFR and fractional sodium excretion, and decreased the concentration of angiotensin II in the renal lymph. Theophylline (5 mumol/min intrarenally) had no significant effect on GFR or RBF yet produced a significant increase in the release of renin and the fractional excretion of sodium. The intrarenal infusion of adenosine (3 X 10(-7) mol/min) during theophylline infusion produced no effect on GFR or RBF, but fractional sodium excretion and renin release were significantly decreased. Adenosine was infused at a lower dose (3 X 10(-8) mol/min) during theophylline (5 X 10(-6) mol/min) infusion in a second group of dogs. With the exception of fractional sodium excretion, all effects of adenosine were effectively antagonized by theophylline. Theophylline at 5 X 10(-6) mol/min, which stimulates renin release and effectively antagonizes the renal effects of adenosine, had no detectable effect on cAMP measured in renal cortex. Furthermore, no change in cortical cAMP was observed until theophylline was increased 50-fold over the dose effective in antagonizing adenosine. These findings demonstrate that theophylline, at concentrations having no effect on cortical cAMP, antagonizes the effect of adenosine on renin release. The results are also consistent with the view that theophylline stimulates renin release by a mechanism other than its action on cAMP.

1993 ◽  
Vol 264 (1) ◽  
pp. F79-F87 ◽  
Author(s):  
D. S. Majid ◽  
A. Williams ◽  
L. G. Navar

Inhibition of nitric oxide (NO) synthesis by intrarenal administration of nitro-L-arginine (NLA) leads to decreases in urinary sodium excretion (UNaV) in association with the increases in renal vascular resistance (RVR). In the present study, we examined the ability of the kidney to alter its sodium excretion in response to acute changes in renal arterial pressure (RAP) in anesthetized dogs before and during intrarenal infusion of NLA (50 micrograms.kg-1.min-1). NO synthesis inhibition in 11 dogs increased RVR by 32 +/- 4% and decreased renal blood flow (RBF) by 25 +/- 3%, outer cortical blood flow by 25 +/- 6%, urine flow by 37 +/- 14%, UNaV by 71 +/- 5%, and fractional excretion of sodium (FENa) by 71 +/- 4%. Glomerular filtration rate was not significantly changed during NLA infusion. As previously reported, there was suppression of the RBF autoregulation plateau during NO synthesis inhibition. In addition, there was a marked attenuation of urine flow and UNaV responses to reductions in RAP (150 to 75 mmHg), with significant reductions in the slopes of the relationships between RAP vs. UNaV and RAP vs. FENa during NLA infusion. Similar responses were observed in nine other dogs treated with the angiotensin receptor antagonist losartan, indicating that an augmented activity of the renin-angiotensin system is not responsible for attenuation of the slope of the pressure-natriuresis relationship during NLA infusion. These data suggest that NO may participate in the mediation of the pressure-natriuresis response.


1980 ◽  
Vol 238 (1) ◽  
pp. F26-F30 ◽  
Author(s):  
G. F. DiBona ◽  
L. L. Rios

Acute unilateral renal denervation and the resultant antidiuresis and antinatriuresis are accompanied by a compensatory antidiuresis and antinatriuresis from the opposite kidney. The present study tested the hypothesis that the renal sympathetic nerves mediated this adaptive response. In the volume-expanded rat, acute left renal denervation increased left kidney fractional sodium excretion from 4.4 +/- 0.6 to 5.9 +/- 0.6%, while right kidney fractional sodium excretion decreased from 4.3 +/- 0.6 to 3.5 +/- 0.5%. Subsequent acute right renal denervation increased right kidney fractional sodium excretion from 3.5 +/- 0.5 to 4.7 +/- 0.6%. Measurement of efferent left renal sympathetic nerve activity before and after acute right renal denervation showed an increase from 10.9 +/- 0.8 to 16.0 +/- 1.4 Hz. When both kidneys were simultaneously subjected to acute renal denervation, fractional excretion of sodium increased bilaterally. In uninephrectomized rats subjected to acute denervation of the remaining kidney, fractional excretion of sodium increased. Glomerular filtration rate was unchanged throughout in all studies. These results demonstrate that the compensatory renal response to acute contralateral renal denervation is mediated by the efferent renal sympathetic nerves.


1994 ◽  
Vol 266 (3) ◽  
pp. R739-R748 ◽  
Author(s):  
J. van der Mark ◽  
R. L. Kline

Angiotensin II (ANG II; 10 or 30 ng/min iv) was infused for 7-10 days in unilaterally adrenalectomized and nephrectomized Sprague-Dawley rats drinking 1% NaCl. The acute pressure-natriuresis relationship was studied under Inactin anesthesia in volume-expanded rats with fixed neurohumoral influences on the remaining kidney. Renal interstitial hydrostatic pressure (RIHP) was measured using a catheter implanted into the renal cortex. Arterial blood pressure before laparotomy was 149 +/- 3 (SE) mmHg (n = 6) and 152 +/- 6 mmHg (n = 16) for ANG II-infused rats (10 and 30 ng/min, respectively) and 123 +/- 5 mmHg (n = 6) and 123 +/- 7 mmHg (n = 16) for the respective control rats. Compared with values in control rats, ANG II-infused rats had significantly (P < 0.05) lower urine flow and absolute and fractional sodium excretion at renal artery pressures of 115-150 mmHg. There were no significant differences between RIHP measured in control and ANG II-hypertensive rats. The shift in the pressure-diuresis, pressure-natriuresis, and pressure-fractional sodium excretion relationships was similar with both doses of ANG II and was reversed by the acute administration of losartan (10 mg/kg iv). In all groups of rats, renal blood flow was autoregulated, whereas glomerular filtration rate was not autoregulated in ANG II-infused rats and was significantly lower than that in control rats at the lower level of renal artery pressure. The data indicate that rats with ANG II-induced hypertension have a rightward shift of the pressure-natriuresis curve caused primarily by a decrease in fractional excretion of sodium. The lack of effect of chronic ANG II infusion on filtration fraction and RIHP suggests that the increased tubular reabsorption was due to a direct action of ANG II on renal tubules. The reversal of these effects by losartan suggests that the shift in the pressure-natriuresis curve in ANG II-induced hypertension is mediated by the AT1-receptor subtype.


1987 ◽  
Vol 253 (5) ◽  
pp. F880-F883
Author(s):  
F. J. Salazar ◽  
J. P. Granger ◽  
M. J. Fiksen-Olsen ◽  
M. D. Bentley ◽  
J. C. Romero

Studies showing that atrial natriuretic peptides (ANP) induce a suppression of the renin-angiotensin system suggest that there might be a modulatory influence of angiotensin II (ANG II) on the natriuretic effect of the ANP system. To evaluate this possibility we assessed, in anesthetized dogs, the net increments in fractional excretion of sodium (FENa) and lithium (FELi) produced by ANP and by the inhibition of ANG II formation with captopril. These agents were infused at separate time periods into the renal artery at a maximal level that has been shown not to alter glomerular filtration rate (GFR). ANP caused an increment in FENa of 4.0 +/- 0.2, whereas captopril caused a much smaller increase of 0.2 +/- 0.04, indicating that most of the natriuretic effect of ANP is unlikely to be solely accounted for by inhibition of ANG II. The administration of both ANP and captopril produced increases in the FELi used as a marker for proximal tubular reabsorption. An infusion of ANG II superimposed on the infusion of captopril reduced the FENa from 1.5 +/- 0.3 to 0.8 +/- 0.1. Under these conditions the administration of ANP produced an increment of 2.7 +/- 0.4 in the FENa. This increase in FENa is 32.5% less than the net increase obtained when ANP was given in the absence of ANG II, whereas under these conditions FELi remained statistically unchanged. These results suggest that the modulatory activity of ANG II on the natriuretic affect of ANP could be negligible under normal conditions.


1992 ◽  
Vol 262 (3) ◽  
pp. R432-R436 ◽  
Author(s):  
J. P. Granger ◽  
M. J. Solhaug

Infusion of calcium antagonists results in significant increases in sodium excretion, an effect that is exacerbated in hypertensive animals. The mechanism responsible for the increase in sodium excretion has not been elucidated. The purpose of this study was to determine the role of renal interstitial hydrostatic pressure (RIHP) in mediating increases in sodium excretion produced by the calcium antagonist verapamil. Changes in renal hemodynamics and electrolyte excretion were examined in response to an intrarenal infusion of verapamil (100 micrograms/min) in normal dogs and in dogs with angiotensin II-induced hypertension. Infusion of verapamil in normal dogs increased renal blood flow by 18% and had no effect on glomerular filtration rate. Renal vascular resistance and filtration fraction both decreased in response to verapamil. Absolute (5.1 +/- 2.3 to 176 +/- 45.8 mueq/min) and fractional excretion of sodium (0.21 +/- 0.13 to 7.36 +/- 3.12%) also increased significantly. Despite renal vasodilation, the natriuresis was not associated with significant increases in RIHP (6.4 +/- 0.9 to 5.8 +/- 0.9 mmHg). Infusion of verapamil into dogs with angiotensin II hypertension resulted in a natriuresis (4.2 +/- 1.6 to 338.7 +/- 78.3 mueq/min) that was much greater than under normal conditions. Although the renal vasodilation was significantly higher in the angiotensin II-hypertensive dogs, the enhanced natriuresis in these animals was not associated with increases in RIHP. The results of this study indicate that increases in RIHP are not responsible for the natriuresis produced by verapamil in normal or angiotensin II-hypertensive dogs.


2016 ◽  
Vol 311 (6) ◽  
pp. F1260-F1266 ◽  
Author(s):  
Xuming Sun ◽  
Ellen Tommasi ◽  
Doris Molina ◽  
Renu Sah ◽  
K. Bridget Brosnihan ◽  
...  

Diets rich in grains and meat and low in fruits and vegetables (acid-producing diets) associate with incident hypertension, whereas vegetarian diets associate with lower blood pressure (BP). However, the pathways that sense and mediate the effects of acid-producing diets on BP are unknown. Here, we examined the impact of the deletion of an acid sensor GPR4 on BP. GPR4 is a proton-sensing G protein-coupled receptor and an acid sensor in brain, kidney, and blood vessels. We found that GPR4 mRNA was higher in subfornical organ (SFO) than other brain regions. GPR4 protein was abundant in SFO and present in capillaries throughout the brain. Since SFO partakes in BP regulation through the renin-angiotensin system (RAS), we measured BP in GPR4−/− and GPR4+/+ mice and found that GPR4 deletion associated with lower systolic BP: 87 ± 1 mmHg in GPR4−/− ( n = 35) vs. 99 ± 2 mmHg ( n = 29) in GPR4+/+; P < 0.0001, irrespective of age and sex. Angiotensin II receptors detected by 125I-Sarthran binding were lower in GPR4−/− than GPR4+/+ mice in SFO and in paraventricular nucleus of hypothalamus. Circulating angiotensin peptides were comparable in GPR4−/− and GPR4+/+ mice, as were water intake and excretion, serum and urine osmolality, and fractional excretion of sodium, potassium, or chloride. A mild metabolic acidosis present in GPR4−/− mice did not associate with elevated BP, implying that deficiency of GPR4 may preclude the effect of chronic acidosis on BP. Collectively, these results posit the acid sensor GPR4 as a novel component of central BP control through interactions with the RAS.


1985 ◽  
Vol 249 (2) ◽  
pp. F299-F307 ◽  
Author(s):  
M. E. Olsen ◽  
J. E. Hall ◽  
J. P. Montani ◽  
A. C. Guyton ◽  
H. G. Langford ◽  
...  

The aim of this study was to determine the role of changes in renal arterial pressure (RAP), renal hemodynamics, and tubular reabsorption in mediating the natriuretic and antinatriuretic actions of angiotensin II (ANG II). In seven anesthetized dogs, endogenous ANG II formation was blocked with captopril, and ANG II was infused intravenously at rates of 5-1,215 ng X kg-1 X min-1 while RAP was either servo-controlled at the preinfusion level or permitted to increase. When RAP was servo-controlled, ANG II infusion at all rates from 5-1,215 ng X kg-1 X min-1 decreased urinary sodium excretion (UNaV) and fractional sodium excretion (FENa) while increasing fractional reabsorption of lithium (FRLi) (an index of proximal tubular fractional sodium reabsorption) and causing no change in calculated distal tubule fractional sodium reabsorption (FRDNa). When RAP was permitted to increase, ANG II infusion rates up to 45 ng X kg-1. min-1 also decreased UNaV and FENa while increasing FRLi and causing no change in FRDNa. However, at 135 ng X kg-1 X min-1 and above, UNaV and FENa increased while FRLi and FRDNa decreased when RAP was allowed to rise, even though renal blood flow and filtration fraction were not substantially different from the values observed when RAP was servo-controlled. Filtered sodium load was slightly higher when RAP was permitted to increase during ANG II infusion compared with when RAP was servo-controlled, although the differences were not statistically significant. Thus, even very large doses of ANG II cause antinatriuresis when RAP is prevented from increasing.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 251 (2) ◽  
pp. R310-R313 ◽  
Author(s):  
T. R. Schwab ◽  
B. S. Edwards ◽  
D. M. Heublein ◽  
J. C. Burnett

Studies were performed to investigate the role of circulating atrial natriuretic peptide (ANP) in acute volume-expansion natriuresis. Sham-operated (SHAM, n = 6) and right atrial appendectomized (ATRX, n = 12) anesthetized rats underwent acute volume expansion with isoncotic albumin. After equilibration and control periods, volume expansion increased urine flow rate, urinary sodium excretion, fractional excretion of sodium, and circulating ANP. Absolute increases in urine flow rate (delta 46 +/- 4 SHAM; delta 25 +/- 5 microliter/min ATRX), urinary sodium excretion (delta 9.48 +/- 1.01 SHAM; delta 4.77 +/- 1.03 mueq/min ATRX), fractional excretion of sodium (delta 3.16 +/- 0.53 SHAM; delta 1.65 +/- 0.32% ATRX), and ANP (delta 303.3 +/- 35.9 SHAM; delta 156.6 +/- 26.0 pg/ml ATRX) were significantly reduced by right atrial appendectomy. No significant differences in mean arterial pressure, central venous pressure, or glomerular filtration rate during volume expansion were observed between groups. These studies support the hypothesis that right atrial appendectomy in the rat attenuates acute volume expansion-induced increases in circulating ANP and urinary sodium excretion and that the natriuresis of acute volume expansion is mediated in part by an increase in circulating ANP.


1988 ◽  
Vol 255 (5) ◽  
pp. F936-F943 ◽  
Author(s):  
R. V. Paul ◽  
T. Ferguson ◽  
L. G. Navar

To evaluate the role of atrial natriuretic factor (ANF) in the renal response to acute blood volume expansion without hemodilution, a reservoir syringe filled with donor rat blood was connected to the femoral artery and vein of anesthetized Sprague-Dawley rats to allow rapid equilibration of the reservoir with the intravascular blood. Volume expansion with blood from the reservoir in two steps (of 1 and 1.5% body wt, separated by 1 h, n = 5 rats) produced a mean peak increase in plasma immunoreactive ANF from 99 +/- 21 to 1,310 +/- 230 pg/ml (P less than 0.001); plasma ANF levels throughout these experiments correlated significantly with simultaneously measured urine flow (r = 0.74, P less than 0.005) and sodium excretion (r = 0.65, P less than 0.005). Another group (n = 7) underwent the same two-step procedure; after the second volume expansion, high-dose atriopeptin III infusion (0.4 microgram.kg-1.min-1 did not further increase fractional excretion of sodium (3.17 +/- 0.27 to 2.50 + 0.39%, P = NS). In another group (n = 9 rats), the same dose of atriopeptin III was started before any blood volume expansion. After the resulting hypotension was corrected by restoration of blood volume, an additional 1.5% body weight blood volume expansion did not further augment sodium excretion. We conclude that the diuresis and natriuresis, which occur in response to volume expansion without hemodilution, rise and fall in parallel with immunoreactive ANF in the plasma, and that ANF and acute blood volume expansion act on the kidney through a similar, saturable mechanism.


1987 ◽  
Vol 65 (11) ◽  
pp. 2219-2224 ◽  
Author(s):  
J. Krayacich ◽  
R. L. Kline ◽  
P. F. Mercer

Denervation supersensitivity in chronically denervated kidneys increases renal responsiveness to increased plasma levels of norepinephrine. To determine whether this effect is caused by presynaptic (i.e., loss of uptake) or postsynaptic changes, we studied the effect of continuous infusion of norepinephrine (330 ng/min, i.v.) and methoxamine (4 μg/min, i.v.), an α1 adrenergic agonist that is not taken up by nerve terminals, on renal function of innervated and denervated kidneys. Ganglionic blockade was used to eliminate reflex adjustments in the innervated kidney and mean arterial pressure was maintained at preganglionic blockade levels by an infusion of arginine vasopressin. With renal perfusion pressure controlled there was a significantly greater decrease in renal blood flow (−67 ± 9 vs. −33 ± 8%), glomerular filtration rate (−60 ± 9 vs. −7 ± 20%), urine flow (−61 ± 7 vs. −24 ± 11%), sodium excretion (−51 ± 15 vs. −32 ± 21%), and fractional excretion of sodium (−50 ± 9 vs. −25 ± 15%) from the denervated kidneys compared with the innervated kidneys during the infusion of norepinephrine. During the infusion of methoxamine there was a significantly greater decrease from the denervated compared with the innervated kidneys in renal blood flow (−54 ± 10 vs. −30 ± 14%), glomerular filtration rate (−51 ± 11 vs. −19 ± 17%), urine flow (−55 ± 10 vs. −39 ± 10%), sodium excretion (−70 ± 9 vs. −59 ± 11%), and fractional excretion of sodium (−53 ± 10 vs. −41 ± 10%). These results suggest that vascular and tubular supersensitivity to norepinephrine in chronically denervated kidneys is due to postsynaptic changes involving α1-adrenergic receptors.


Sign in / Sign up

Export Citation Format

Share Document