Altered pressure natriuresis in chronic angiotensin II hypertension in rats

1994 ◽  
Vol 266 (3) ◽  
pp. R739-R748 ◽  
Author(s):  
J. van der Mark ◽  
R. L. Kline

Angiotensin II (ANG II; 10 or 30 ng/min iv) was infused for 7-10 days in unilaterally adrenalectomized and nephrectomized Sprague-Dawley rats drinking 1% NaCl. The acute pressure-natriuresis relationship was studied under Inactin anesthesia in volume-expanded rats with fixed neurohumoral influences on the remaining kidney. Renal interstitial hydrostatic pressure (RIHP) was measured using a catheter implanted into the renal cortex. Arterial blood pressure before laparotomy was 149 +/- 3 (SE) mmHg (n = 6) and 152 +/- 6 mmHg (n = 16) for ANG II-infused rats (10 and 30 ng/min, respectively) and 123 +/- 5 mmHg (n = 6) and 123 +/- 7 mmHg (n = 16) for the respective control rats. Compared with values in control rats, ANG II-infused rats had significantly (P < 0.05) lower urine flow and absolute and fractional sodium excretion at renal artery pressures of 115-150 mmHg. There were no significant differences between RIHP measured in control and ANG II-hypertensive rats. The shift in the pressure-diuresis, pressure-natriuresis, and pressure-fractional sodium excretion relationships was similar with both doses of ANG II and was reversed by the acute administration of losartan (10 mg/kg iv). In all groups of rats, renal blood flow was autoregulated, whereas glomerular filtration rate was not autoregulated in ANG II-infused rats and was significantly lower than that in control rats at the lower level of renal artery pressure. The data indicate that rats with ANG II-induced hypertension have a rightward shift of the pressure-natriuresis curve caused primarily by a decrease in fractional excretion of sodium. The lack of effect of chronic ANG II infusion on filtration fraction and RIHP suggests that the increased tubular reabsorption was due to a direct action of ANG II on renal tubules. The reversal of these effects by losartan suggests that the shift in the pressure-natriuresis curve in ANG II-induced hypertension is mediated by the AT1-receptor subtype.

1984 ◽  
Vol 247 (2) ◽  
pp. F246-F251 ◽  
Author(s):  
W. S. Spielman

The action of theophylline on the adenosine-induced decrease in renin release was studied in anesthetized dogs. Adenosine inhibited renin release, decreased GFR and fractional sodium excretion, and decreased the concentration of angiotensin II in the renal lymph. Theophylline (5 mumol/min intrarenally) had no significant effect on GFR or RBF yet produced a significant increase in the release of renin and the fractional excretion of sodium. The intrarenal infusion of adenosine (3 X 10(-7) mol/min) during theophylline infusion produced no effect on GFR or RBF, but fractional sodium excretion and renin release were significantly decreased. Adenosine was infused at a lower dose (3 X 10(-8) mol/min) during theophylline (5 X 10(-6) mol/min) infusion in a second group of dogs. With the exception of fractional sodium excretion, all effects of adenosine were effectively antagonized by theophylline. Theophylline at 5 X 10(-6) mol/min, which stimulates renin release and effectively antagonizes the renal effects of adenosine, had no detectable effect on cAMP measured in renal cortex. Furthermore, no change in cortical cAMP was observed until theophylline was increased 50-fold over the dose effective in antagonizing adenosine. These findings demonstrate that theophylline, at concentrations having no effect on cortical cAMP, antagonizes the effect of adenosine on renin release. The results are also consistent with the view that theophylline stimulates renin release by a mechanism other than its action on cAMP.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Xiao C Li ◽  
Ana P Leite ◽  
Liang Zhang ◽  
Jia L Zhuo

The present study tested the hypothesis that intratubular angiotensin II (Ang II) and AT 1a receptors in the proximal tubules of the kidney plays an important role in basal blood pressure control and in the development of Ang II-induced hypertension. Mutant mice with proximal tubule-specific deletion of AT 1a receptors in the kidney, PT- Agtr1a -/- , were generated to test the hypothesis. Eight groups (n=7-12 per group) of adult male wild-type (WT) and PT- Agtr1a -/- mice were infused with or without Ang II for 2 weeks (1.5 mg/kg, i.p.). Basal systolic, diastolic, and mean arterial pressures were ~13 ± 3 mmHg lower in PT- Agtr1a -/- than WT mice ( P <0.01). Basal glomerular filtration rate (GFR), as measured using transdermal FITC-sinistrin, was significantly higher in PT- Agtr1a -/- mice (WT: 160.4 ± 7.0 μl/min vs. PT- Agtr1a -/- : 186.0 ± 6.0 μl/min, P <0.05). Basal 24 h urinary Na + excretion (U Na V) was significantly higher in PT- Agtr1a -/- than WT mice ( P <0.01). In response to Ang II infusion, both WT and PT- Agtr1a -/- mice developed hypertension, and the magnitude of the pressor response to Ang II was similar in WT (Δ43 ± 3 mmHg, P <0.01) and PT- Agtr1a -/- mice (Δ39 ± 5 mmHg, P <0.01). However, the absolute blood pressure level was still 16 ± 3 mmHg lower in PT- Agtr1a -/- mice ( P <0.01). Ang II significantly decreased GFR to 132.2 ± 7.0 μl/min in WT mice ( P <0.01), and to 129.4 ± 18.6 μl/min in PT- Agtr1a -/- mice ( P <0.01), respectively. In WT mice, U Na V increased from 139.3 ± 22.3 μmol/24 h in the control group to 196.4 ± 29.6 μmol/24 h in the Ang II-infused group ( P <0.01). In PT- Agtr1a -/- mice, U Na V increased from 172.0 ± 10.2 μmol/24 h in the control group to 264.7 ± 35.4 μmol/24 h in the Ang II-infused group ( P <0.01). The pressor response to Ang II was attenuated, while the natriuretic response was augmented by losartan in WT and PT- Agtr1a -/- mice ( P <0.01). Finally, proximal tubule-specific deletion of AT 1a receptors significantly augmented the pressure-natriuresis response and natriuretic responses to acute saline infusion ( P <0.01) or a 2% high salt diet ( P <0.01). We concluded that deletion of AT 1a receptors selectively in the proximal tubules lowers basal blood pressure and attenuates Ang II-induced hypertension by increasing GFR and promoting the natriuretic response in PT- Agtr1a -/- mice.


1991 ◽  
Vol 69 (2) ◽  
pp. 164-169 ◽  
Author(s):  
Robert L. Kline ◽  
Graham P. McLennan

The pressure–natriuresis relationship was studied in anesthetized, 7- to 9-week-old control spontaneously hypertensive rats (SHR) and in SHR that had been treated with hydralazine (20 mg∙kg−1∙day−1 in drinking water) starting at 4–5 weeks of age. To minimize reflex changes in kidney function during changes in renal artery pressure, neural and hormonal influences on the kidney were fixed by surgical renal denervation, adrenalectomy, and infusion of a hormone cocktail (330 μL∙kg−1∙min−1) containing high levels of aldosterone, arginine vasopressin, hydrocortisone, and norepinephrine dissolved in 0.9% NaCl containing 1% albumin. Changes in renal function were measured using standard clearance techniques, while renal artery pressure was varied between 136 ± 1 and 186 ± 2 mmHg (1 mmHg = 133.32 Pa) in control SHR (n = 10) and between 113 ± 1 and 162 ± 2 mmHg in treated SHR (n = 11). Mean arterial pressure (+SE) under Inactin anesthesia was 172 ± 3 mmHg in control SHR and 146 ± 3 mmHg in treated SHR (p < 0.05). Where renal artery pressure overlapped between groups, there were no significant differences in glomerular filtration rate. Renal blood flow was also similar in both groups, although at 160 mmHg blood flow was slightly but significantly reduced in treated SHR. Urine flow and total and fractional sodium excretion increased similarly with increases in renal artery pressure in both groups, but the pressure–natriuresis curve in hydralazine-treated SHR was displaced to the left along the pressure axis. The data indicate that chronic administration of hydralazine in young SHR enhances fractional sodium excretion, suggesting that tubular reabsorption of sodium is decreased by hydralazine.Key words: renal function, volume loading, sodium excretion.


2021 ◽  
Vol 14 (4) ◽  
pp. 1459-1462
Author(s):  
Faiyaz Ahmed

Hypertension is a major cardiovascular problem resulting in significant mortality. Cissus quadrangularis having several pharmacological effects has not been evaluated for its ability to modulate blood pressure. Thus, the ability of C. quadrangularis aqueous extract (CQE) to modulate blood pressure was evaluated in normotensive and angiotensin II-induced hypertensive rats under urethane anesthesia. The animals were divided into four groups namely, control (saline injection), CQE (extract alone, 10 mg/kg), Ang II (Ang II alone, 0.5 µg/kg) and Ang II + CQE (Ang II + extract). All treatments were delivered by intravenous route and in Ang II + CQE group, Ang II was injected 30 min after injection of the extract. Hemodynamic parameters, systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MABP), and heart rate (HR) were recorded by the BIOPAC system after the cannulation of the carotid artery and jugular vein. The results indicated that CQE lowered SBP, DBP, MABP and heart rate to varying degrees in normotensive rats compared to control groups. In case of angiotensin II-induced hypertension, CQE administration resulted in substantial decrease in SBP, DBP, and MABP which were raised by Ang II. CQE reduced SBP, DBP, and MABP by 12, 59, and 11%, respectively. It is worth noting that, while SBP was not brought down to baseline levels by CQE, DBP was, suggesting significant hypotensive/antihypertensive activity of CQE. Further research is required to determine the molecular mechanism of C. quadrangularis extract’s hypotensive/antihypertensive action and to conduct clinical trials to establish its optimal use as an antihypertensive therapeutic.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Jia L Zhuo ◽  
Liang Zhang ◽  
Ana Leite ◽  
Xiao C Li

The present study used global ( Nhe3 -/- ), kidney-selective (tg Nhe3 -/- ), and proximal tubule-specific Na + /H + exchanger 3 (NHE3)-deficient mice (PT- Nhe3 -/- ) to test the hypothesis that NHE3 is required for the full development of angiotensin II (Ang II)-induced hypertension in mice. Four groups of adult male, age-matched wild-type (WT), global Nhe3 -/- , kidney-selective tg Nhe3 -/- and proximal tubule-specific Nhe3 -/- mice were infused with: a) saline; b) Ang II (10 pmol/min, i.v.); Ang II via an osmotic minipump for 2 weeks (1.5 mg/kg/day, i.p.); or treated with Ang II and losartan concurrently for 2 weeks (20 mg/kg/day, p.o.). Under basal conditions, global Nhe3 -/- , kidney-selective tg Nhe3 -/- and proximal tubule-specific Nhe3 -/- mice all showed significantly lower systolic, diastolic, and mean arterial pressure than wild-type mice (~15 ± 3 mmHg, P <0.01). The hypotensive phenotype in both global Nhe3 -/- and kidney-selective tg Nhe3 -/- mice was associated with abnormal intestinal structures, diarrhea, increased 24 h fecal Na + excretion, and salt wasting ( P <0.01). By contrast, there were no differences in intestinal structures and fecal Na + excretion between wild-type and PT- Nhe3 -/- mice. PT- Nhe3 -/- mice showed significant diuretic and natriuretic responses compared with wild-type mice ( P <0.01). Acute infusion of Ang II markedly increased arterial blood pressure in a time-dependent manner in wild-type mice, as expected ( P <0.01), but the pressure response was attenuated in global Nhe3 -/- , kidney-selective tg Nhe3 -/- , and PT- Nhe3 -/- mice ( P <0.01). Furthermore, the chronic pressor response to 2-week Ang II infusion was also significantly attenuated in Nhe3 -/- , tgNhe3 -/- , and PT- Nhe3 -/- mice, compared with wild-type mice ( P <0.01). Finally, concurrent treatment with losartan completely blocked the acute and chronic pressor responses to Ang II in wild-type, Nhe3 -/- , tg Nhe3 -/- , and PT- Nhe3 -/- mice (p<0.01). Taken together, these data support the proof of concept that NHE3 in the small intestines and the proximal tubules of the kidney is required for maintaining basal blood pressure homeostasis and for the development of Ang II-induced hypertension. Supported by NIH grants, 2R01DK102429-03A1, 1R56HL130988-01, and 2R01DK067299-10A1.


1992 ◽  
Vol 262 (3) ◽  
pp. R432-R436 ◽  
Author(s):  
J. P. Granger ◽  
M. J. Solhaug

Infusion of calcium antagonists results in significant increases in sodium excretion, an effect that is exacerbated in hypertensive animals. The mechanism responsible for the increase in sodium excretion has not been elucidated. The purpose of this study was to determine the role of renal interstitial hydrostatic pressure (RIHP) in mediating increases in sodium excretion produced by the calcium antagonist verapamil. Changes in renal hemodynamics and electrolyte excretion were examined in response to an intrarenal infusion of verapamil (100 micrograms/min) in normal dogs and in dogs with angiotensin II-induced hypertension. Infusion of verapamil in normal dogs increased renal blood flow by 18% and had no effect on glomerular filtration rate. Renal vascular resistance and filtration fraction both decreased in response to verapamil. Absolute (5.1 +/- 2.3 to 176 +/- 45.8 mueq/min) and fractional excretion of sodium (0.21 +/- 0.13 to 7.36 +/- 3.12%) also increased significantly. Despite renal vasodilation, the natriuresis was not associated with significant increases in RIHP (6.4 +/- 0.9 to 5.8 +/- 0.9 mmHg). Infusion of verapamil into dogs with angiotensin II hypertension resulted in a natriuresis (4.2 +/- 1.6 to 338.7 +/- 78.3 mueq/min) that was much greater than under normal conditions. Although the renal vasodilation was significantly higher in the angiotensin II-hypertensive dogs, the enhanced natriuresis in these animals was not associated with increases in RIHP. The results of this study indicate that increases in RIHP are not responsible for the natriuresis produced by verapamil in normal or angiotensin II-hypertensive dogs.


2010 ◽  
Vol 298 (4) ◽  
pp. F847-F856 ◽  
Author(s):  
Stephen A. Contag ◽  
Jianli Bi ◽  
Mark C. Chappell ◽  
James C. Rose

Antenatal corticosteroids may have long-term effects on renal development which have not been clearly defined. Our objective was to compare the responses to intrarenal infusions of ANG II in two groups of year-old, male sheep: one group exposed to a clinically relevant dose of betamethasone before birth and one not exposed. We wished to test the hypothesis that antenatal steroid exposure would enhance renal responses to ANG II in adult life. Six pairs of male sheep underwent unilateral nephrectomy and renal artery catheter placement. The sheep were infused for 24 h with ANG II or with ANG II accompanied by blockade of the angiotensin type 1 (AT1) or type 2 (AT2) receptor. Baseline mean arterial blood pressure among betamethasone-exposed sheep was higher than in control animals (85.8 ± 2.2 and 78.3 ± 1.0 mmHg, respectively, P = 0.003). Intrarenal infusion of ANG II did not increase systemic blood pressure ( P ≥ 0.05) but significantly decreased effective renal plasma flow and increased renal artery resistance ( P < 0.05). The decrease in flow and increase in resistance were significantly greater in betamethasone- compared with vehicle-exposed sheep (betamethasone P < 0.05, vehicle P ≥ 0.05). This effect appeared to be mediated by a heightened sensitivity to the AT1 receptor among betamethasone-exposed sheep. Sodium excretion initially decreased in both groups during ANG II infusion; however, a rebound was observed after 24 h. AT1 blockade was followed by a significant rebound after 24 h in both groups. AT2 blockade blunted the 24-h rebound effect among the vehicle-exposed sheep compared with the betamethasone-exposed sheep. In conclusion, antenatal corticosteroid exposure appears to modify renal responsiveness to ANG II by increasing AT1- and decreasing AT2 receptor-mediated actions particularly as related to renal blood flow and sodium excretion.


1992 ◽  
Vol 262 (1) ◽  
pp. R61-R71 ◽  
Author(s):  
J. E. Hall ◽  
H. L. Mizelle ◽  
M. W. Brands ◽  
D. A. Hildebrandt

In normal subjects, high sodium intake causes little change in mean arterial pressure (MAP). However, MAP is sodium sensitive after reduction of kidney mass. The present study examined the role of increased renal artery pressure and decreased angiotensin II (ANG II) formation in maintaining sodium balance during high sodium intake in dogs with reduced kidney mass. In seven dogs with pressure natriuresis intact, increasing sodium intake from 36 to 466 meq/day for 7 days raised MAP from 91 +/- 2 to 106 +/- 2 mmHg. Sodium excretion increased promptly and cumulative sodium balance increased by only 80 +/- 26 meq after 7 days of high sodium intake. When renal perfusion pressure was servo-controlled to prevent pressure natriuresis, comparable increases in sodium intake raised MAP from 88 +/- 2 to 128 +/- 4 mmHg after 7 days. Sodium excretion rose to match intake, but cumulative sodium balance increased by 226 +/- 34 meq after 7 days. In dogs in which ANG II levels were held constant by converting enzyme inhibition and constant ANG II infusion (2 ng.kg-1.min-1 iv), raising sodium intake for 7 days elevated MAP from 126 +/- 2 to 146 +/- 4 mmHg after 7 days while increasing cumulative sodium balance by 212 +/- 29 meq. When renal perfusion pressure was servo-controlled and ANG II levels held constant, raising sodium intake elevated MAP from 125 +/- 3 to 166 +/- 11 mmHg and increased cumulative sodium balance by 399 +/- 128 meq. These data indicate that pressure natriuresis and decreased ANG II formation are important in minimizing sodium retention and hypertension during high sodium intake. However, other mechanisms can increase sodium excretion independent of pressure natriuresis and suppression of ANG II during salt-induced hypertension.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Ana Paula O Leite ◽  
Xiao C Li ◽  
Dulce E Casarini ◽  
Jia L Zhuo

Dysregulation of intrarenal renin-angiotensin system is one of the key factors of human hypertension, but the mechanisms involved remain incompletely understood. To determine the roles of AT 1a receptors in the proximal tubules of the kidney, we infused angiotensin II (Ang II) for 2 weeks (40 ng / min, i.p.) in adult male and female wild-type C57BL/6J and mutant mice with deletion of AT 1a receptors in the proximal tubules (PT- Agtr1a -/- ), and treated with or without the AT 1 receptor blocker losartan (20 mg/kg/day, p.o.) (n=8 per group). The pressor response, 24 h urinary Na + excretion, glomerular and tubulointerstitial injury were compared between male and female wild-type and PT- Agtr1a -/- mice. Basal systolic, diastolic, and mean arterial blood pressure were about 13 ± 3 mmHg lower in male and female PT- Agtr1a -/- mice ( P <0.01), but no differences were observed between male and female wild-type or PT- Agtr1a -/- mice. In response to Ang II, both male and female wild-type and PT- Agtr1a -/- mice developed hypertension ( P <0.01), and the net pressor response were similar in male and female wild-type and PT- Agtr1a -/- mice (n.s.). However, absolute blood pressure was about 12 ± 3 mmHg lower in male and female PT- Agtr1a -/- mice ( P <0.01 vs. wild-type). Ang II-induced hypertension increased the natriuretic response in both male and female wild-type and PT- Agtr1a -/- mice ( P <0.01), but there were no significant differences between male and female wild-type and PT- Agtr1a -/- mice (n.s). Losartan did not increase the natriuretic responses further in all animals. Furthermore, Ang II-induced hypertension was associated with significant increases in glomerular and tubulointerstitial injury in male and female wild-type mice ( P <0.01), which were attenuated in male and female PT- Agtr1a -/- mice ( P <0.01). LOS treatment attenuated Ang II-induced hypertension and decreased Ang II-induced glomerular and tubulointerstitial injury in male and female wild-type and PT- Agtr1a -/- mice ( P <0.01). Taken together, we demonstrated that intratubular AT 1 (AT 1a ) receptors in the proximal tubules of the kidney plays a key role in maintaining basal blood pressure homeostasis and overall body salt and fluid balance, and the development of Ang II-induced hypertension and kidney injury.


2015 ◽  
Vol 308 (10) ◽  
pp. C803-C812 ◽  
Author(s):  
Colin N. Young ◽  
Anfei Li ◽  
Frederick N. Dong ◽  
Julie A. Horwath ◽  
Catharine G. Clark ◽  
...  

Endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) generation in the brain circumventricular subfornical organ (SFO) mediate the central hypertensive actions of Angiotensin II (ANG II). However, the downstream signaling events remain unclear. Here we tested the hypothesis that angiotensin type 1a receptors (AT1aR), ER stress, and ROS induce activation of the transcription factor nuclear factor-κB (NF-κB) during ANG II-dependent hypertension. To spatiotemporally track NF-κB activity in the SFO throughout the development of ANG II-dependent hypertension, we used SFO-targeted adenoviral delivery and longitudinal bioluminescence imaging in mice. During low-dose infusion of ANG II, bioluminescence imaging revealed a prehypertensive surge in NF-κB activity in the SFO at a time point prior to a significant rise in arterial blood pressure. SFO-targeted ablation of AT1aR, inhibition of ER stress, or adenoviral scavenging of ROS in the SFO prevented the ANG II-induced increase in SFO NF-κB. These findings highlight the utility of bioluminescence imaging to longitudinally track transcription factor activation during the development of ANG II-dependent hypertension and reveal an AT1aR-, ER stress-, and ROS-dependent prehypertensive surge in NF-κB activity in the SFO. Furthermore, the increase in NF-κB activity before a rise in arterial blood pressure suggests a causal role for SFO NF-κB in the development of ANG II-dependent hypertension.


Sign in / Sign up

Export Citation Format

Share Document