pH in principal cells of frog skin (Rana pipiens): effects of amiloride and potential

1988 ◽  
Vol 255 (5) ◽  
pp. F922-F929 ◽  
Author(s):  
K. Drewnowska ◽  
T. U. Biber

Intracellular pH (pHi) and apical cell membrane potential (Va) were determined in principal cells of frog skin (Rana pipiens) with double-barrel micro-electrodes. In the Northern and Southern varieties, respectively, pHi is 0.38 and 0.26 pH units below bath pH. Amiloride, applied apically, causes reversible intracellular acidification at concentrations of 10(-5) M or higher. Voltage clamp-induced hyperpolarization and depolarization of Va result in intracellular acidification and alkalinization, respectively. This response of pHi is inhibited or abolished when the apical side is treated with 10(-3) M 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). Amiloride-induced intracellular acidification is not exclusively due to the hyperpolarization of Va that accompanies amiloride treatment since 1) amiloride causes greater acidification than equivalent voltage clamp-induced hyperpolarization of Va, 2) amiloride-induced acidification persists in DIDS-treated tissues, and 3) there is no correlation between hyperpolarization of Va and intracellular acidification occurring after amiloride. We conclude that pHi is below the extracellular pH. Amiloride causes intracellular acidification that may be in part connected with hyperpolarization of Va. However, a major component of amiloride-induced acidification is due to other factors, possibly inhibition of apical Na+-H+ exchange. The inhibitory effect of apically applied DIDS suggests that the voltage dependent changes in pHi are related to movement of HCO3 (or OH) ions across the apical cell membrane.

1988 ◽  
Vol 255 (5) ◽  
pp. F930-F935 ◽  
Author(s):  
K. Drewnowska ◽  
E. J. Cragoe ◽  
T. U. Biber

Measurements of intracellular pH (pHi) and of apical cell membrane potential (Va) were made in principal cells of frog skin (Rana pipiens) with double-barrel microelectrodes under open-circuit conditions. The tissues were pretreated with stilbenes (10(-3) M) and bathed in HCO3- -free NaCl Ringer solution that was buffered with 6 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (pH 7.8). Substitution of extracellular Na+ on both sides of the epithelium with N-methyl-D-glucamine caused intracellular acidification by 0.27 pH units. Restoration of Na+ on the apical side alone or on both sides caused a pHi recovery of 0.24 and 0.28 pH units, respectively, whereas return of Na+ on the basolateral side caused no recovery. Recovery of pHi on restoration of Na+ to the apical side was prevented by 10(-5) M 5-(N-ethyl-N-isopropyl)-amiloride. In individual preparations there was no correlation between pHi recovery due to return of apical Na+ and changes in Va. The average change in pHi was several times greater than the one expected from voltage clamp-induced changes in Va at constant extracellular Na+. The results suggest the presence of a Na+-H+ exchange on the apical side of principal cells. Such a process could be part of a negative feedback mechanism for regulation of Na+ entry via apical Na+ channels into principal cells.


1988 ◽  
Vol 254 (1) ◽  
pp. F95-F104 ◽  
Author(s):  
K. Drewnowska ◽  
T. U. Biber

Intracellular Cl activity was measured in isolated frog skin (Rana pipiens) with double-barrel microelectrodes. The initial rate of Cl uptake was measured in Cl-depleted cells on reexposure to Cl on apical or basolateral side. In skins with high and low conductance, cell CL activity increased 1.33 and 0.14 mM/s with apical reexposure and 5.03 and 0.30 mM/s with basolateral reexposure, respectively. The initial Cl uptake was reduced on the apical side by 93% with 10(-3) M DIDS (4,4'-diisothiocyanostilbene-2,2ߗ-disulfonic acid) and on the basolateral side by 99% with 10(-3) M SITS (4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid) plus 10(-5) M bumetanide. The initial rate of Cl loss was measured when Cl was removed from the bath: addition of HCO3 to Cl- and HCO3-free solution caused an acceleration of Cl loss in absence but not in presence of DIDS on apical side. In contrast, Cl loss across the basolateral side was not enhanced by HCO3. In conclusion, Na-transporting cells have a substantial Cl permeability on both sides. HCO3-stimulated Cl loss provides evidence for Cl-HCO3 exchange and permits localization of this process in apical cell membranes of granular cells.


1994 ◽  
Vol 267 (1) ◽  
pp. R107-R114
Author(s):  
V. Lyall ◽  
T. S. Belcher ◽  
J. H. Miller ◽  
T. U. Biber

Intracellular pH (pHi), apical membrane potential (Va), and fractional apical membrane resistance (FRa) were measured in principal cells of isolated frog skin (Rana pipiens) with double-barreled microelectrodes under short-circuit conditions. Basolateral exposure to 10 mU/ml arginine vasotocin (AVT) depolarized Va by 30 mV, decreased FRa by 33%, increased short-circuit current (Isc) by 17 microA, and increased pHi by 0.17 pH units. The response of Va, Isc, and pHi occurred concurrently. Forskolin, theophylline, and 8-(4-chlorophenyl-thio)-adenosine 3',5'-cyclic monophosphate caused similar changes in Va, Isc, and pHi. The enhanced response of Isc, Va, and FRa to short pulses of apical amiloride applied during AVT or cAMP exposure suggests an increase in apical Na+ conductance. The presence of cAMP agonists also enhanced the response of pHi to amiloride. We conclude that the AVT- and cAMP-induced increase in Na+ transport across the apical cell membrane is associated with a change in pHi. These data are consistent with the hypothesis that changes in pHi may play a role in the second messenger cascade initiated by the antidiuretic hormone.


1989 ◽  
Vol 256 (6) ◽  
pp. F1075-F1083 ◽  
Author(s):  
M. Kuwahara ◽  
K. Ishibashi ◽  
R. Krapf ◽  
F. C. Rector ◽  
C. A. Berry

To determine the effect of luminal pH on cell pH and basolateral cell membrane potential difference (Vbl) of rabbit proximal convoluted tubules, Vbl was measured by conventional microelectrodes and intracellular pH was measured microfluorometrically. Lowering lumen pH acidified the cell and depolarized Vbl. Three factors contributed to depolarization of Vbl. Lowering lumen pH decreased apical cell membrane potassium permeability (PK) as indicated by the following: 1) at lumen pH 7.4 raising lumen [K] depolarized Vbl; 2) lowering lumen pH eliminated the depolarization of Vbl induced by increasing lumen [K]. An additional effect was suggested by the following: lumen Ba2+ blunted, but did not eliminate, the Vbl response to lowering lumen pH. An effect on basolateral K permeability (PK) via its effect on cell pH was suggested by the fact that lowering lumen pH dramatically reduced the depolarization induced by increasing bath [K]. Lowering lumen pH might influence Vbl by inhibiting H+-HCO3- transport. Addition of 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) to the bath solution hyperpolarized Vbl and enhanced the depolarization induced by lowering luminal pH. At luminal pH 6.0 SITS had no effect, suggesting elimination of H+ secretion. Addition of 1 mM luminal amiloride had no effect on Vbl or the response of Vbl to lowering luminal pH, but in the presence of amiloride SITS still hyperpolarized Vbl, suggesting amiloride-insensitive electrogenic H+ secretion. These results suggest that lumen pH-dependent depolarization of Vbl is due to 1) a decrease in apical PK; 2) cell acidification with secondary effects on basolateral PK; and 3) a decrease in apical electrogenic H+ transport.


Author(s):  
Len Wen-Yung ◽  
Mei-Jung Lin

Four cone-shaped rectal papillae locate at the anterior part of the rectum in Dacus dorsalis fly. The circular base of the papilla protrudes into the haemolymph (Fig. 1,2) and the rest cone-shaped tip (Fig. 2) inserts in the rectal lumen. The base is surrounded with the cuticle (Fig. 5). The internal structure of the rectal papilla (Fig. 3) comprises of the cortex with the columnar epithelial cells and a rod-shaped medulla. Between them, there is the infundibular space and many trabeculae connect each other. Several tracheae insert into the papilla through the top of the medulla, then run into the cortical epithelium and locate in the intercellular space. The intercellular sinuses distribute in the posterior part of the rectal papilla.The cortex of the base divides into about thirty segments. Between segments there is a radial cell (Fig. 4). Under the cuticle, the apical cell membrane of the cortical epithelium is folded into a regular border of leaflets (Fig. 5).


1985 ◽  
Vol 248 (6) ◽  
pp. F858-F868 ◽  
Author(s):  
S. C. Sansom ◽  
R. G. O'Neil

The effects of mineralocorticoid (DOCA) treatment of rabbits on the Na+ and K+ transport properties of the cortical collecting duct apical cell membrane were assessed using microelectrode techniques. Applying standard cable techniques and equivalent circuit analysis to the isolated perfused tubule, the apical cell membrane K+ and Na+ currents and conductances could be estimated from the selective effects of the K+ channel blocker Ba2+ and the Na+ channel blocker amiloride on the apical membrane; amiloride treatment was observed also to decrease the tight junction conductance by an average of 10%. After 1 day of DOCA treatment, the Na+ conductance and current (Na+ influx) of the apical cell membrane doubled and remained elevated with prolonged treatment for up to 2 wk. The apical cell membrane K+ conductance was not influenced after 1 day, although the K+ current (K+ secretion) increased significantly due to an increased driving force for K+ exit. After 4 days or more of DOCA treatment the K+ conductance doubled, resulting in a further modest stimulation in K+ secretion. After 2 wk of DOCA treatment the tight junction conductance decreased by near 30%, resulting in an additional hyperpolarization of the transepithelial voltage, thereby favoring K+ secretion. It is concluded that the acute effect (within 1 day) of mineralocorticoids on Na+ and K+ transport is an increase in the apical membrane Na+ conductance followed by delayed chronic alterations in the apical membrane K+ conductance and tight junction conductance, thereby resulting in a sustained increased capacity of the tubule to reabsorb Na+ and secrete K+.


1997 ◽  
Vol 273 (1) ◽  
pp. G204-G216 ◽  
Author(s):  
L. al-Nakkash ◽  
C. U. Cotton

Secretion of salt and water by the epithelial cells that line pancreatic ducts depends on activation of apical membrane Cl- conductance. In the present study, we characterized two types of Cl- conductances present in the apical cell membrane of bovine pancreatic duct epithelial cells. Primary cultures of bovine main pancreatic duct epithelium and an immortalized cell line (BPD1) derived from primary cultures were used. Elevation of intracellular adenosine 3',5'-cyclic monophosphate (cAMP) or Ca2+ in intact monolayers of duct epithelium induced sustained anion secretion. Agonist-induced changes in plasma membrane Cl- permeability were accessed by 36 Cl- efflux, whole cell current recording, and measurements of transepithelial Cl- current across permeabilized epithelial monolayers. Elevation of intracellular cAMP elicited a sustained increase in Cl- permeability, whereas elevation of intracellular Ca2+ induced only a transient increase in Cl- permeability. Ca(2+)- but not cAMP-induced increases in Cl- permeability were abolished by preincubation of cells with the Ca2+ buffer 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl) ester (BAPTA-AM). N-phenylanthranilic acid (DPC; 1 mM) and glibenclamide (100 microM), but not 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; 500 microM), inhibited the cAMP-induced increase in Cl- permeability. In contrast, DPC and DIDS, but not glibenclamide, inhibited the Ca(2+)-induced increase in Cl- permeability. We conclude from these experiments that bovine pancreatic duct epithelial cells express at least two types of Cl- channels, cAMP and Ca2+ activated, in the apical cell membrane. Because the Ca(2+)-activated increase in Cl- permeability is transient, the extent to which this pathway contributes to sustained anion secretion by the ductal epithelium remains to be determined.


1987 ◽  
Vol 253 (6) ◽  
pp. F1263-F1272 ◽  
Author(s):  
M. Hunter ◽  
J. D. Horisberger ◽  
B. Stanton ◽  
G. Giebisch

Single collecting tubules of Amphiuma kidneys were perfused in vitro to characterize their electrophysiological properties. The lumen-negative potential (-24 mV) was abolished by amiloride in the lumen and by ouabain in the bath. Ion substitution experiments in the lumen demonstrated the presence of a large sodium conductance in the apical cell membrane, but no evidence was obtained for a significant potassium or chloride conductance. Ion substitutions in the bath solution and the depolarizing effect of barium on the basolateral membrane potential demonstrated the presence of a large potassium conductance in the basolateral cell membrane. Measurements of dilution potentials in amiloride-treated tubules revealed a modest cation selectivity of the paracellular pathway. These results support a cell model in which sodium reabsorption occurs by electrodiffusion across the apical cell membrane and active transport across the basolateral cell membrane. The absence of a detectable potassium conductance in the apical cell membrane suggests that secretion of this ion cannot take place by diffusion from cell to lumen.


1984 ◽  
Vol 247 (2) ◽  
pp. F291-F302 ◽  
Author(s):  
S. C. Sansom ◽  
E. J. Weinman ◽  
R. G. O'Neil

The chloride-conductive properties of the isolated rabbit cortical collecting duct were assessed with microelectrode techniques. The transepithelial, apical, and basolateral membrane potential differences, Vte, Va, and Vb, respectively, were monitored continuously along with periodic measurements of the transepithelial conductance, Gte, and fractional resistance, fRa (ratio of apical to apical plus basolateral membrane resistance). Active transport was eliminated in all experiments by luminal addition of 50 microM amiloride in HCO3-free solutions. Upon reducing the chloride activity in the bath (gluconate replacement), there was a marked depolarization of Vb and decrease in Gte and fRa, demonstrating a major dependence of the basolateral membrane conductance on the bath chloride activity. However, a significant K+ conductance at that barrier was also apparent since raising the bath K+ concentration caused an increase in Gte and fRa and depolarization of Vb. Lowering the chloride activity of the perfusate caused a consistent decrease of Gte but not of fRa, effects consistent with a high C1- conductance of the tight junction and little, if any, apical membrane C1- conductance. By use of the C1- -dependent conductances, the C1- permeabilities at equilibrium were estimated to be near 1.0 X 10(-5) cm X s-1 for the tight junction, PtiC1, and 5 X 10(-5) cm X s-1 for the basolateral cell membrane, PbC1. It is concluded that the paracellular pathway provides a major route for transepithelial C1- transport. Furthermore, since the isotopically measured C1- permeability is severalfold greater than PtiC1, a significant transcellular flux of C1- must exist, implicating a neutral exchange mechanism at the apical cell membrane in series with the high basolateral membrane C1- conductance.


1985 ◽  
Vol 248 (4) ◽  
pp. F500-F506 ◽  
Author(s):  
B. M. Koeppen

Segments of outer medullary collecting duct were dissected from the inner stripe of the rabbit kidney (OMCDi) and perfused in vitro. The conductive properties of the tubule epithelium and individual cell membranes were determined by means of cable analysis and intracellular voltage-recording microelectrodes. In 35 tubules the transepithelial voltage (VT) and resistance (RT) averaged 17.2 +/- 1.4 mV, lumen positive, and 58.6 +/- 5.3 k omega X cm, respectively. The basolateral membrane voltage, (Vbl) was -29.2 +/- 2.1 mV (n = 23). The apical cell membrane did not contain appreciable ion conductances, as evidenced by the high values of apical cell membrane fractional resistance (fRa = Ra/Ra + Rb), which approached unity (0.99 +/- 0.01; n = 23). Moreover, addition of amiloride or BaCl2 to the tubule lumen was without effect on the electrical characteristics of the cell, as was a twofold reduction in luminal [Cl-]. The conductive properties of the basolateral cell membrane were assessed with bath ion substitutions. A twofold reduction in bath [Cl-] depolarized Vbl by 14.7 +/- 0.4 mV (theoretical, 17 mV), while a 10-fold increase in bath [K+] resulted in only a 0.9 +/- 0.4 mV depolarization (theoretical, 61 mV). Substituting bath Na+ with tetramethylammonium (from 150 to 75 mM) was without effect. Reducing bath [HCO-3] from 25 to 5 mM (constant PCO2) resulted in a steady-state depolarization of Vbl of 8.4 +/- 0.4 mV that could not be attributed to conductive HCO-3 movement. Thus, the basolateral cell membrane is predominantly Cl- selective.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document