principal cells
Recently Published Documents


TOTAL DOCUMENTS

508
(FIVE YEARS 53)

H-INDEX

54
(FIVE YEARS 4)

2022 ◽  
Vol 56 (1) ◽  
pp. 1-12

BACKGROUND/AIMS: Apelin and its G protein-coupled receptor APLNR (also known as APJ) are widely expressed within the central nervous system and peripheral organs including heart, lung and kidney. Several studies have shown that the apelin/APJ system is involved in various important physiological processes such as energy metabolism, cardiovascular functions and fluid homeostasis. In the kidney, the apelin/APJ system performs a wide range of activities. We recently demonstrated that apelin antagonises the hydro-osmotic effect of vasopressin on aquaporin-2 water channel (AQP-2) expression by reducing its mRNA and protein levels in collecting duct principal cells. The central role of these cells in water and sodium transport is governed by AQP-2 and the epithelial sodium channel (ENaC). The coordination of these channels is essential for the control of extracellular fluid volume, sodium homeostasis and blood pressure. This study aimed at investigating the role of apelin in the regulation of sodium balance in the distal nephron, and more specifically its involvement in modulating the expression and activity of ENaC in collecting duct principal cells. METHODS: mpkCCD cells were incubated in the presence of aldosterone and treated with or without apelin-13. Transepithelial Na+ current was measured and the changes in ENaC expression determined by RT-PCR and immunoblotting. RESULTS: Our data show that apelin-13 reduces the transepithelial sodium amiloride-sensitive current in collecting duct principal cells after 8h and 24h treatment. This effect was associated with a decrease in αENaC subunit expression and mediated through the ERK pathway as well as SGK1 and Nedd4-2. CONCLUSION: Our findings indicate that apelin is involved in the fine regulation of sodium balance in the renal collecting duct by opposing the effects of aldosterone, likely by activation of ENaC ubiquitination.


2022 ◽  
Vol 23 (2) ◽  
pp. 763
Author(s):  
Sandrine Baltzer ◽  
Timur Bulatov ◽  
Christopher Schmied ◽  
Andreas Krämer ◽  
Benedict-Tilman Berger ◽  
...  

The cAMP-dependent aquaporin-2 (AQP2) redistribution from intracellular vesicles into the plasma membrane of renal collecting duct principal cells induces water reabsorption and fine-tunes body water homeostasis. However, the mechanisms controlling the localization of AQP2 are not understood in detail. Using immortalized mouse medullary collecting duct (MCD4) and primary rat inner medullary collecting duct (IMCD) cells as model systems, we here discovered a key regulatory role of Aurora kinase A (AURKA) in the control of AQP2. The AURKA-selective inhibitor Aurora-A inhibitor I and novel derivatives as well as a structurally different inhibitor, Alisertib, prevented the cAMP-induced redistribution of AQP2. Aurora-A inhibitor I led to a depolymerization of actin stress fibers, which serve as tracks for the translocation of AQP2-bearing vesicles to the plasma membrane. The phosphorylation of cofilin-1 (CFL1) inactivates the actin-depolymerizing function of CFL1. Aurora-A inhibitor I decreased the CFL1 phosphorylation, accounting for the removal of the actin stress fibers and the inhibition of the redistribution of AQP2. Surprisingly, Alisertib caused an increase in actin stress fibers and did not affect CFL1 phosphorylation, indicating that AURKA exerts its control over AQP2 through different mechanisms. An involvement of AURKA and CFL1 in the control of the localization of AQP2 was hitherto unknown.


Author(s):  
Alan Mark Weinstein

The renal response to acute hyperkalemia is mediated by increased K secretion within connecting tubule (CNT), flux that is modulated by tubular effects (e.g. aldosterone) in conjunction with increased luminal flow. There is ample evidence that peritubular K blunts Na reabsorption in proximal tubule, thick ascending Henle limb, and distal convoluted tubule (DCT). While any such reduction may augment CNT delivery, the relative contribution of each is uncertain. The kidney model of this lab was recently advanced with representation of cortical labyrinth and medullary ray. Model tubules capture the impact of hyperkalemia to blunt Na reabsorption within each upstream segment. However, this forces the question of the extent to which increased Na delivery is transmitted past macula densa and its tubuloglomerular feedback (TGF) signal. Beyond increasing macula densa Na delivery, peritubular K is predicted to raise cytosolic Cl and depolarize macula densa cells, which may also activate TGF. Thus, although upstream reduction in Na transport may be larger, it appears that the DCT effect is critical to increasing CNT delivery. Beyond the flow effect, hyperkalemia reduces ammoniagenesis and reduced ammoniagenesis enhances K excretion. What this model provides is a possible mechanism. When cortical NH4 is taken up via peritubular Na,K(NH4)-ATPase, it acidifies principal cells. Consequently, reduced ammoniagenesis increases principal cell pH, thereby increasing conductance of both ENaC and ROMK, enhancing K excretion. In this model, aldosterone's effect on principal cells, diminished DCT Na reabsorption, and reduced ammoniagenesis, all provide relatively equal and additive contributions to renal K excretion.


2021 ◽  
pp. 2773-2781
Author(s):  
Pitchaya Matchimakul ◽  
Wanpitak Pongkan ◽  
Piyamat Kongtung ◽  
Raktham Mektrirat

Background and Aim: Aquaporin-2 (AQP2) and arginine vasopressin receptor-2 (AVPR2) are proteins that control water homeostasis in principal cells. Chronic kidney disease (CKD) is defined as the impairment and irreversible loss of kidney function and/or structure, which causes water imbalances and polyuria. The study aimed to know the expression of AQPs and AVPR2 in the kidneys of a canine with CKD. Materials and Methods: The kidneys were collected from two dog carcasses from Small Animal Teaching Hospital, Faculty of Veterinary Medicine, Chiang Mai University. The kidney tissue was prepared for immunohistochemistry and investigated the expression and localization of tissue's AQP2 and AVPR2. For statistical analysis, the Mann–Whitney U-test was applied to the data. Results: By immunohistochemistry, AQP2 was expressed strongly in the basolateral and apical membranes of the principal cells, whereas AVPR2 was localized in the principal cell's basolateral membrane in both renal cortex and renal medulla. In the normal kidney, the semi-quantitative immunohistochemistry for the percentage of protein expression of AQP2 and AVPR2 was 5.062±0.4587 and 4.306±0.7695, respectively. In contrast, protein expression of AQP2 and AVPR2 in CKD was found to be 1.218±0.1719 and 0.8536±0.1396, respectively. The data shows that the percentage of AQP2 and AVPR2 expression was decreased, corresponding to a 4-fold and 5-fold in CKD (p<0.001). Conclusion: Our findings revealed that CKD was a marked decrease in AQP2 and AVPR2 expression. The central role of specific AQP2 and AVPR2 in regulating water homeostasis will provide correlations in case of CKD with polyuria.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Domenico Pimpinella ◽  
Valentina Mastrorilli ◽  
Corinna Giorgi ◽  
Silke Coemans ◽  
Salvatore Lecca ◽  
...  

Acetylcholine (ACh), released in the hippocampus from fibers originating in the medial septum/diagonal band of Broca (MSDB) complex, is crucial for learning and memory. The CA2 region of the hippocampus has received increasing attention in the context of social memory. However, the contribution of ACh to this process remains unclear. Here, we show that in mice, ACh controls social memory. Specifically, MSDB cholinergic neurons inhibition impairs social novelty discrimination, meaning the propensity of a mouse to interact with a novel rather than a familiar conspecific. This effect is mimicked by a selective antagonist of nicotinic AChRs delivered in CA2. Ex vivo recordings from hippocampal slices provide insight into the underlying mechanism, as activation of nAChRs by nicotine increases the excitatory drive to CA2 principal cells via disinhibition. In line with this observation, optogenetic activation of cholinergic neurons in MSDB increases the firing of CA2 principal cells in vivo. These results point to nAChRs as essential players in social novelty discrimination by controlling inhibition in the CA2 region.


2021 ◽  
Vol 15 ◽  
Author(s):  
Priyodarshan Goswamee ◽  
Elizabeth Leggett ◽  
A. Rory McQuiston

The thalamic midline nucleus reuniens modulates hippocampal CA1 and subiculum function via dense projections to the stratum lacunosum-moleculare (SLM). Previously, anatomical data has shown that reuniens inputs in the SLM form synapses with dendrites of both CA1 principal cells and inhibitory interneurons. However, the ability of thalamic inputs to excite the CA1 principal cells remains controversial. In addition, nothing is known about the impact of reuniens inputs on diverse subpopulations of interneurons in CA1. Therefore, using whole cell patch-clamp electrophysiology in ex vivo hippocampal slices of wild-type and transgenic mice, we measured synaptic responses in different CA1 neuronal subtypes to optogenetic stimulation of reuniens afferents. Our data shows that reuniens inputs mediate both excitation and inhibition of the CA1 principal cells. However, the optogenetic excitation of the reuniens inputs failed to drive action potential firing in the majority of the principal cells. While the excitatory postsynaptic currents were mediated via direct monosynaptic activation of the CA1 principal cells, the inhibitory postsynaptic currents were generated polysynaptically via activation of local GABAergic interneurons. Moreover, we demonstrate that optogenetic stimulation of reuniens inputs differentially recruit at least two distinct and non-overlapping subpopulations of local GABAergic interneurons in CA1. We show that neurogliaform cells located in SLM, and calretinin-containing interneuron-selective interneurons at the SLM/stratum radiatum border can be excited by stimulation of reuniens inputs. Together, our data demonstrate that optogenetic stimulation of reuniens afferents can mediate excitation, feedforward inhibition, and disinhibition of the postsynaptic CA1 principal cells via multiple direct and indirect mechanisms.


2021 ◽  
pp. ASN.2021010046
Author(s):  
Eva Dizin ◽  
Valerie Olivier ◽  
Isabelle Roth ◽  
Ali Sassi ◽  
Grégoire Arnoux ◽  
...  

Background Active sodium reabsorption is the major factor influencing renal oxygen consumption and production of reactive oxygen species (ROS). Increased sodium reabsorption uses more oxygen, which may worsen medullary hypoxia and produce more ROS via enhanced mitochondrial ATP synthesis. Both mechanisms may activate the hypoxiainducible factor (HIF) pathway. Because the collecting duct is exposed to low oxygen pressure and variations of active sodium transport, we assessed whether the HIF pathway controls epithelial sodium channel (ENaC)-dependent sodium transport. Methods We investigated HIF's effect on ENaC expression in mpkCCDcl4 cells (a model of collecting duct principal cells) using real-time PCR and Western blot and ENaC activity by measuring amiloride-sensitive current. We also assessed the effect of hypoxia and sodium intake on abundance of kidney sodium transporters in wild-type and inducible kidney tubule-specific Hif1α knockout mice. Results In cultured cells, activation of the HIF pathway by dimethyloxalylglycine or hypoxia inhibited sodium transport and decreased expression of βENaC and γENaC, as well as of Na,K-ATPase. HIF1α silencing increased βENaC and γENaC expression and stimulated sodium transport. A constitutively active mutant of HIF1α produced the opposite effect. Aldosterone and inhibition of the mitochondrial respiratory chain slowly activated the HIF pathway, suggesting that ROS may also activate HIF. Decreased γENaC abundance induced by hypoxia in normal mice was abolished in Hif1α knockout mice. Similarly, Hif1α knockout led to increased γENaC abundance under high sodium intake. Conclusions This study reveals that γENaC expression and activity are physiologically controlled by the HIF pathway, which may represent a negative feedback mechanism to preserve oxygenation and/or prevent excessive ROS generation under increased sodium transport.


Author(s):  
Ali Sassi ◽  
Yubao Wang ◽  
Alexandra Chassot ◽  
Isabelle Roth ◽  
Suresh Ramakrishnan ◽  
...  

Fine tuning of Na+reabsorption takes place along the aldosterone-sensitive distal nephron (ASDN) which includes the collecting duct (CD) where it is mainly regulated by aldosterone. In the CD,Na+ reabsorption is mediated by the epithelial sodium channel (ENaC) and the sodium pump (Na,K-ATPase). Paracellular ion permeability is mainly dependent on tight junction permeability. Claudin-8 is one of the main tight-junction proteins expressed along the ASDN. We have previously shown a coupling between trancellular Na+ reabsorption and paracellular Na+barrier. We hypothesize that aldosterone controls the expression levels of both transcellular Na+transporters and paracellular claudin-8 in a coordinated manner. Here, we show that aldosterone increased mRNA and protein levels as well as lateral membrane localization of claudin-8 in cultured CD principal cells. The increase in claudin-8 mRNA levels in response to aldosterone was prevented by preincubation with 17-hydroxy progesterone, a mineralocorticoid receptor antagonist, and by inhibition of transcription with actinomycin D. We also show that low salt diet which stimulated aldosterone secretion was associated with increased claudin-8 abundance in the mouse kidney. Reciprocally, mice subjected to high salt diet which inhibits aldosterone secretion or treated with spironolactone, a mineralocorticoid receptor (MR)antagonist, displayed decreased claudin-8 expression. Inhibition of glycogen synthase kinase-3 (GSK3), Lyn and Abl signaling pathways prevented the effect of aldosterone on claudin-8 mRNA and protein abundance, suggesting that signaling protein kinases plays a permissive role on the transcriptional activity of the mineralocorticoid receptor.This study shows that signaling via multiple protein kinases working in concert mediates the aldosterone-induced claudin-8 expression in collecting duct.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1452
Author(s):  
Galina S. Baturina ◽  
Liubov E. Katkova ◽  
Claus Peter Schmitt ◽  
Evgeniy I. Solenov ◽  
Sotirios G. Zarogiannis

In disease states, mesothelial cells are exposed to variable osmotic conditions, with high osmotic stress exerted by peritoneal dialysis (PD) fluids. They contain unphysiologically high concentrations of glucose and result in major peritoneal membrane transformation and PD function loss. The effects of isotonic entry of urea and myo-inositol in hypertonic (380 mOsm/kg) medium on the cell volume of primary cultures of rat peritoneal mesothelial cells and rat kidney outer medullary collecting duct (OMCD) principal cells were studied. In hypertonic medium, rat peritoneal mesothelial cells activated a different mechanism of cell volume regulation in the presence of isotonic urea (100 mM) in comparison to rat kidney OMCD principal cells. In kidney OMCD cells inflow of urea into the shrunken cell results in restoration of cell volume. In the shrunken peritoneal mesothelial cells, isotonic urea inflow caused a small volume increase and activated regulatory volume decrease (RVD). Isotonic myo-inositol activated RVD in hypertonic medium in both cell types. Isotonic application of both osmolytes caused a sharp increase of intracellular calcium both in peritoneal mesothelial cells and in kidney OMCD principal cells. In conclusion, peritoneal mesothelial cells exhibit RVD mechanisms when challenged with myo-inositol and urea under hyperosmolar isotonic switch from mannitol through involvement of calcium-dependent control. Myo-inositol effects were identical with the ones in OMCD principal cells whereas urea effects in OMCD principal cells led to no RVD induction.


Author(s):  
Nowrin Ahmed ◽  
Drew B Headley ◽  
Denis Pare

The central medial (CMT) and paraventricular (PVT) thalamic nuclei project strongly to the basolateral amygdala (BL). Similarities between the responsiveness of CMT, PVT, and BL neurons suggest that these nuclei strongly influence BL activity. Supporting this possibility, an electron microscopic study reported that in contrast with other extrinsic afferents, CMT and PVT axon terminals form very few synapses with BL interneurons. However, since limited sampling is a concern in electron microscopic studies, the present investigation was undertaken to compare the impact of CMT and PVT thalamic inputs on principal and local-circuit BL neurons using optogenetic methods and whole-cell recordings in vitro. Optogenetic stimulation of CMT and PVT axons elicited glutamatergic EPSPs or EPSCs in principal cells and interneurons, but they generally had a longer latency in interneurons. Moreover, after blockade of polysynaptic interactions with tetrodotoxin (TTX), a lower proportion of interneurons (50%) than principal cells (90%) remained responsive to CMT and PVT inputs. While the presence of TTX-resistant responses in some interneurons indicates that CMT and PVT inputs directly contact some local-circuit cells, their lower incidence and amplitude after TTX suggest that CMT and PVT inputs form fewer synapses with them than with principal BL cells. Together, these results indicate that CMT and PVT inputs mainly contact principal BL neurons such that when CMT or PVT neurons fire, limited feed-forward inhibition counters their excitatory influence over principal BL cells. However, CMT and PVT axons can also recruit interneurons indirectly, via the activation of principal cells, thereby generating feedback inhibition.


Sign in / Sign up

Export Citation Format

Share Document