Importance of inspiratory muscle tone in maintenance of FRC in the newborn

1981 ◽  
Vol 51 (4) ◽  
pp. 830-834 ◽  
Author(s):  
J. Lopes ◽  
N. L. Muller ◽  
M. H. Bryan ◽  
A. C. Bryan

The importance of inspiratory muscle tone in the maintenance of functional residual capacity (FRC) in newborns was studied in eight premature infants with birth weights of 1,166 +/- 217 g and gestational age 29 +/- 1.9 wk (mean +/- SD). Rib cage and abdominal anteroposterior diameters were monitored with magnetometers, and electromyograms of the diaphragm and intercostal muscles were recorded with surface electrodes. Sleep state was monitored using electrooculogram and behavioral criteria. We assessed the decrease in tonic activity of the inspiratory muscles and the fall in end-expiratory lung volume during apnea compared with the period just preceding apnea. A total of 98 apneas were analyzed. In all instances a decrease in diaphragmatic and intercostal tone was associated with a decrease in the anteroposterior diameter of both rib cage and abdomen, indicating a fall in FRC. These changes were more marked during quiet sleep than during rapid-eye-movement sleep (P less than 0.01). Our results suggest that inspiratory muscle tone is a major determinant of FRC in the newborn.

1977 ◽  
Vol 43 (4) ◽  
pp. 600-602 ◽  
Author(s):  
K. Tusiewicz ◽  
H. Moldofsky ◽  
A. C. Bryan ◽  
M. H. Bryan

The pattern of motion of the rib cage and abdomen/diaphragm was studied in three normal subjects during sleep. Sleep state was monitored by electroencephalograph and electrocculograph. Intercostal electromyographs (EMG's) were recorded from the second interspace parasternally. Abdominothoracic motion was monitored with magnetometers and these signals calibrated by isovolume lines either immediately before going to sleep, or if there was movement, on awakening. Respiration was recorded using a jerkin plethysmograph. In the awake subject in the supine position, the rib cage contributed 44% to the tidal volume and had essentially the same contribution in quiet sleep. However, in active or rapid eye movement sleep the rib cage contribution fell to 19% of the tidal volume. This was accompanied by a marked reduction in the intercostal EMG. With the subject in the upright position the rib cage appears to be passively driven by the diaphragm. However, the present data suggest that active contraction of the intercostal muscles is required for normal rib cage expansion in the supine position.


1978 ◽  
Vol 45 (4) ◽  
pp. 581-589 ◽  
Author(s):  
V. P. Vellody ◽  
M. Nassery ◽  
W. S. Druz ◽  
J. T. Sharp

With a linearized respiratory magnetometer, measurements of anteroposterior and lateral diameters of both the rib cage and the abdomen were made at functional residual capacity and continuously during tidal breathing. Twenty-five subjects with normal respiratory systems were studied in the sitting, supine, lateral decubitus, and prone body positions. When subjects changed from sitting to supine position anteroposterior diameters of both rib cage and abdomen decreased while their lateral diameters increased. Both anteroposterior and lateral tidal excursions of the rib cage decreased; those of the abdomen increased. When subjects turned from supine to lateral decubitus position both anteroposterior diameters increased and the lateral diameters decreased. This was associated with an increase in both lateral excursions and a decrease in the abdominal anteroposterior excursions. Diameters and tidal excursions in the prone position resembled those in the supine position. Diameter changes could be explained by gravitational effects. Differences in tidal excursions accompanying body position change were probably related to 1) differences in the distribution of respiratory muscle force, 2) differences in the activity or mechanical advantage of various inspiratory muscles, and 3) local compliance changes in parts of the rib cage and abdomen.


1987 ◽  
Vol 63 (5) ◽  
pp. 1853-1861 ◽  
Author(s):  
M. D. Revow ◽  
S. J. England ◽  
H. A. Stogryn ◽  
D. L. Wilkes

In infants under the age of 6 mo respiratory inductive plethysmograph (RIP)-calculated tidal volumes (VT) were compared with simultaneously measured volumes using a pneumotachograph (PNT) to 1) assess whether using multiple points (MP) along the inspiratory profile of a breath is superior to using only VT when calculating volume-motion (VM) coefficients, 2) verify the assumption of independent contributions of the abdomen and rib cage to VT, which was accomplished by extending the normal RIP model to include a term representing interaction between these two compartments, and 3) investigate whether VM coefficients are sleep-state dependent. Neither use of multiple points nor inclusion of the interacting term improved the performance of the RIP over that observed using a simple two-compartment model with VT measurements. However, VM coefficients obtained during quiet sleep (QS) were not reliable when used during rapid-eye-movement (REM) sleep, suggesting that coefficients obtained during one sleep state may not be applicable to another state where there is a substantial change in the relative abdominal/rib cage contributions to VT.


1987 ◽  
Vol 62 (3) ◽  
pp. 1299-1306 ◽  
Author(s):  
R. L. Begle ◽  
J. B. Skatrud ◽  
J. A. Dempsey

The role of conscious factors in the ventilatory compensation for shortened inspiratory muscle length and the potency of this compensatory response were studied in five normal subjects during non-rapid-eye-movement sleep. To shorten inspiratory muscles, functional residual capacity (FRC) was increased and maintained for 2–3 min at a constant level (range of increase 160–1,880 ml) by creating negative pressure within a tank respirator in which the subjects slept. Minute ventilation was maintained in all subjects over the entire range of increased FRC (mean change +/- SE = -3 +/- 1%) through preservation of tidal volume (-2 +/- 2%) despite slightly decreased breathing frequency (-6 +/- 2%). The decrease in frequency (-13 +/- 2%) was due to a prolongation in expiratory time. Inspiratory time shortened (-10 +/- 1%). Mean inspiratory flow increased 15 +/- 3% coincident with an increase in the slope of the moving time average of the integrated surface diaphragmatic electromyogram (67 +/- 21%). End-tidal CO2 did not rise. In two subjects, control tidal volume was increased 35–50% with CO2 breathing. This augmented tidal volume was still preserved when FRC was increased. We concluded that the compensatory response to inspiratory muscle shortening did not require factors associated with the conscious state. In addition, the potency of this response was demonstrated by preservation of tidal volume despite extreme shortening of the inspiratory muscles and increase in control tidal volumes caused by CO2 breathing. Finally, the timing changes we observed may be due to reflexes following shortening of inspiratory muscle length, increase in abdominal muscle length, or cardiovascular changes.


1996 ◽  
Vol 80 (4) ◽  
pp. 1270-1278 ◽  
Author(s):  
P. Sliwinski ◽  
S. Yan ◽  
A. P. Gauthier ◽  
P. T. Macklem

We evaluated the effect of global inspiratory muscle fatigue (GF) on respiratory muscle control during exercise at 30, 60, and 90% of maximal power output in normal subjects. Fatigue was induced by breathing against a high inspiratory resistance until exhaustion. Esophageal and gastric pressures, anteroposterior displacement of the rib cage and abdomen, breathing pattern, and perceived breathlessness were measured. Induction of GF had no effect on the ventilatory parameters during mild and moderate exercise. It altered, however, ventilatory response to heavy exercise by increasing breathing frequency and minute ventilation, with minor changes in tidal volume. This was accompanied by an increase in perceived breathlessness. GF significantly increased both the tonic and phasic activities of abdominal muscles that allowed 1) the diaphragm to maintain its function while developing less pressure, 2) the same tidal volume with lesser shortening of the rib cage inspiratory muscles, and 3) relaxation of the abdominal muscles to contribute to lung inflation. The increased work performed by the abdominal muscles may, however, lead to a reduction in their strength. GF may impair exercise performance in some healthy subjects that is probably not related to excessive breathlessness or other ventilatory factors. We conclude that the respiratory system is remarkably adaptable in maintaining ventilation during exercise even with impaired inspiratory muscle contractility.


1985 ◽  
Vol 58 (5) ◽  
pp. 1438-1443 ◽  
Author(s):  
A. Mier ◽  
C. Brophy ◽  
M. Estenne ◽  
J. Moxham ◽  
M. Green ◽  
...  

To assess the actions of the rectus abdominis and external oblique muscles on the rib cage in humans, these two muscles were stimulated with surface electrodes in four normal supine subjects at functional residual capacity. Changes in anteroposterior and transverse rib cage diameters and changes in xiphipubic distance were measured with pairs of magnetometers. Stimulation of rectus abdominis produced a marked decrease in the xiphipubic distance and in the anteroposterior diameter, thus making the rib cage more elliptic. In contrast, stimulation of the external oblique caused a decrease in the transverse diameter, making the rib cage more cylindrical. When both muscles were stimulated simultaneously, the resultant rib cage distortion depended on the relative voltage at which each muscle was stimulated. Electromyogram recordings showed that there was no cross contamination or activity of the diaphragm during the muscle stimulations. Transdiaphragmatic pressure increased with the voltage of stimulation, suggesting passive lengthening of the diaphragm. X-ray studies were performed in two subjects and confirmed the main magnetometer findings. These studies thus confirm that the rib cage in humans is more easily distortable than conventionally thought. The abdominal muscles can distort it in either direction depending on which muscles are contracting.


2020 ◽  
Vol 10 (15) ◽  
pp. 5178
Author(s):  
Shin Jun Park

After stroke, limited ribcage movement may lead to impaired respiratory function. Combining threshold inspiratory muscle training with rib cage joint mobilization has been shown to enhance the recovery of respiratory function in patients with stroke. The present study investigated whether the combination of rib cage joint mobilization and inspiratory muscle training would improve chest expansion, inspiratory muscle activity, and pulmonary function after stroke. Thirty stroke patients were recruited and randomly assigned to one of the two groups, namely 6-week rib cage joint mobilization with inspiratory muscle training (experimental group) or inspiratory muscle training alone (control group). Outcome measures included upper and lower chest expansion, activity of accessory inspiratory muscles (latissimus dorsi (LD) and upper trapezius (UT)), and pulmonary function (forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and peak expiratory flow (PEF)). All evaluations were conducted at baseline and after 6 weeks of inspiratory muscle training. Significant increases were observed in upper and lower chest expansion, LD and UT muscle activity, FVC, FEV1, and PEF in both the groups. Upper and lower chest expansion and muscle activity of UT and LD were significantly higher in the experimental group than in the control group. No significant differences were observed in FVC, FEV1, and PEF between the groups. Inspiratory muscle training is effective in improving chest expansion, inspiratory muscle activity, and pulmonary function after stroke. The addition of rib cage joint mobilization further increases chest expansion and inspiratory muscle activity.


1986 ◽  
Vol 61 (1) ◽  
pp. 16-24 ◽  
Author(s):  
P. W. Collett ◽  
L. A. Engel

We examined the relationship between the O2 cost of breathing (VO2 resp) and lung volume at constant load, ventilation, work rate, and pressure-time product in five trained normal subjects breathing through an inspiratory resistance at functional residual capacity (FRC) and when lung volume (VL) was increased to 37 +/- 2% (mean +/- SE) of inspiratory capacity (high VL). High VL was maintained using continuous positive airway pressure of 9 +/- 2 cmH2O and with the subjects coached to relax during expiration to minimize respiratory muscle activity. Six paired runs were performed in each subject at constant tidal volume (0.62 +/- 0.2 liters), frequency (23 +/- 1 breaths/min), inspiratory flow rate (0.45 +/- 0.1 l/s), and inspiratory muscle pressure (45 +/- 2% of maximum static pressure at FRC). VO2 resp increased from 109 +/- 15 ml/min at FRC by 41 +/- 11% at high VL (P less than 0.05). Thus the efficiency of breathing at high VL (3.9 +/- 0.2%) was less than that at FRC (5.2 +/- 0.3%, P less than 0.01). The decrease in inspiratory muscle efficiency at high VL may be due to changes in mechanical coupling, in the pattern of recruitment of the respiratory muscles, or in the intrinsic properties of the inspiratory muscles at shorter length. When the work of breathing at high VL was normalized for the decrease in maximum inspiratory muscle pressure with VL, efficiency at high VL (5.2 +/- 0.3%) did not differ from that at FRC (P less than 0.7), suggesting that the fall in efficiency may have been related to the fall in inspiratory muscle strength. During acute hyperinflation the decreased efficiency contributes to the increased O2 cost of breathing and may contribute to the diminished inspiratory muscle endurance.


1985 ◽  
Vol 58 (4) ◽  
pp. 1136-1142 ◽  
Author(s):  
M. B. Reid ◽  
R. B. Banzett ◽  
H. A. Feldman ◽  
J. Mead

We measured tidal volume (VT), chest wall dimensions, end-tidal PCO2, and respiratory muscle electromyograms as seated subjects were immersed in water. We studied nine spontaneously breathing subjects; five were uninformed. Raising the water to xiphoid level pushed the abdomen in and expanded the rib cage at end expiration. This increased the diaphragm's operating length, giving it a contractile advantage, and shortened the inspiratory intercostals, giving them a contractile disadvantage. Peak inspiratory activities of both muscle groups decreased; inspiratory time (TI), respiratory frequency (f), and VT were unchanged. The experiments thus demonstrated operational length compensation during immersion and further showed that inspiratory muscle activation is not adjusted locally, according to changes in each muscle's length, but rather that the response is global. Xiphoid-to-shoulder immersion was less easily interpreted, since both rib cage and abdomen were compressed, lengthening both inspiratory muscles. Our subjects continued to maintain VT, f, and TI. Peak inspiratory activities of both muscles were further reduced. We do not attribute the change in inspiratory muscle activation to altered chemical drive or to voluntary response. Rather, the response appears to be a mechanoreceptive reflex that employs afferent information from the lungs or diaphragm to adjust all inspiratory muscle activities.


1981 ◽  
Vol 50 (2) ◽  
pp. 279-282 ◽  
Author(s):  
N. Muller ◽  
A. C. Bryan ◽  
N. Zamel

We studied tonic activity of the inspiratory muscles during exacerbation of asthma in five female and two male patients. Exacerbation was provoked by withholding bronchodilatory medication for 12 h prior to the study. Thoracic gas volume (TGV) at the end of resting expiration was determined before and after albuterol (salbutamol) inhalation with a body plethysmograph. Intercostal muscle electromyogram (EMG) was recorded with surface electrodes and diaphragmatic EMG with esophageal electrodes. Tonic activity was defined as electrical activity in the EMG present throughout expiration. After salbutamol the TGV decreased 13.4 +/- 2.9% (mean +/- SE) (P less than 0.01). This decrease in TGV was accompanied by a proportional reduction in tonic intercostal (r = 0.78, P less than 0.05) and diaphragmatic activity (r = 0.84, P less than 0.05). These findings suggest that the hyperinflation present during exacerbation of asthma is at least in part due to active inspiratory muscle activity present throughout expiration.


Sign in / Sign up

Export Citation Format

Share Document