inspiratory resistance
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 14)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Beatrix Krause-Sorio ◽  
Eunjoo An ◽  
Andrea P. Aguila ◽  
Fernando Martinez ◽  
Ravi S. Aysola ◽  
...  

Background: Inspiratory muscle training (IMT) may improve respiratory and cardiovascular functions in obstructive sleep apnea (OSA) and is a potential alternative or adjunct treatment to continuous positive airway pressure (CPAP). IMT protocols were originally designed for athletes, however, we found some OSA patients could not perform the exercise, so we aimed for a more OSA-friendly protocol. Our feasibility criteria included (1) participants successfully managing the technique at home; (2) participants completing daily practice sessions and recording data logs; and (3) capturing performance plateaus to determine an optimal length of the intervention.Methods: Five sedentary OSA patients participated in this feasibility study (three men, mean age = 61.6 years, SD = 10.2). Using a digital POWERbreathe K4 or K5 device, participants performed 30 daily inhalations against a resistance set at a percentage of maximum, recalculated weekly. Participants were willing to perform one but not two daily practice sessions. Intervention parameters from common IMT protocols were adapted according to ability and subjective feedback. Some were unable to perform the typically used 75% of maximum inspiratory resistance so we lowered the target to 65%. The technique required some practice; therefore, we introduced a practice week with a 50% target. After an initial 8 weeks, the intervention was open-ended and training continued until all participants demonstrated at least one plateau of inspiratory strength (2 weeks without strength gain). Weekly email and phone reminders ensured that participants completed all daily sessions and logged data in their online surveys. Weekly measures of inspiratory resistance, strength, volume, and flow were recorded.Results: Participants successfully completed the practice and subsequent 65% IMT resistance targets daily for 13 weeks. Inspiratory strength gains showed plateaus in all subjects by the end of 10 weeks of training, suggesting 12 weeks plus practice would be sufficient to achieve and capture maximum gains. Participants reported no adverse effects.Conclusion: We developed and tested a 13-week IMT protocol in a small group of sedentary, untreated OSA patients. Relative to other IMT protocols, we successfully implemented reduced performance requirements, a practice week, and an extended timeframe. This feasibility study provides the basis for a protocol for clinical trials on IMT in OSA.


2021 ◽  
pp. 1-2
Author(s):  
Sebastian Siebelmann

Spaceflight-associated neuro-ocular syndrome (SANS) involves unilateral or bilateral optic disc edema, widening of the optic nerve sheath, and posterior globe flattening. Owing to posterior globe flattening, it is hypothesized that microgravity causes a disproportionate change in intracranial pressure (ICP) relative to intraocular pressure. Countermeasures capable of reducing ICP include thigh cuffs and breathing against inspiratory resistance. Owing to the coupling of central venous pressure (CVP) and intracranial pressure, we hypothesized that both ICP and CVP will be reduced during both countermeasures. In four male participants (32 ± 13 yr) who were previously implanted with Ommaya reservoirs for treatment of unrelated clinical conditions, ICP was measured invasively through these ports. Subjects were healthy at the time of testing. CVP was measured invasively by a peripherally inserted central catheter. Participants breathed through an impedance threshold device (ITD, −7 cmH<sub>2</sub>O) to generate negative intrathoracic pressure for 5 min, and subsequently, wore bilateral thigh cuffs inflated to 30 mmHg for 2 min. Breathing through an ITD reduced both CVP (6 ± 2 vs. 3 ± 1 mmHg; <i>P</i> = 0.02) and ICP (16 ± 3 vs. 12 ± 1 mmHg; <i>P</i> = 0.04) compared to baseline, a result that was not observed during the free breathing condition (CVP, 6 ± 2 vs. 6 ± 2 mmHg, <i>P</i> = 0.87; ICP, 15 ± 3 vs. 15 ± 4 mmHg, <i>P</i> = 0.68). Inflation of the thigh cuffs to 30 mmHg caused no meaningful reduction in CVP in all four individuals (5 ± 4 vs. 5 ± 4 mmHg; <i>P</i> = 0.1), coincident with minimal reduction in ICP (15 ± 3 vs. 14 ± 4 mmHg; <i>P =</i>0.13). The application of inspiratory resistance breathing resulted in reductions in both ICP and CVP, likely due to intrathoracic unloading.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 113
Author(s):  
Agnieszka Gruszecka ◽  
Magdalena K. Nuckowska ◽  
Monika Waskow ◽  
Jacek Kot ◽  
Pawel J. Winklewski ◽  
...  

The precise mechanisms connecting the cardiovascular system and the cerebrospinal fluid (CSF) are not well understood in detail. This paper investigates the couplings between the cardiac and respiratory components, as extracted from blood pressure (BP) signals and oscillations of the subarachnoid space width (SAS), collected during slow ventilation and ventilation against inspiration resistance. The experiment was performed on a group of 20 healthy volunteers (12 females and 8 males; BMI =22.1±3.2 kg/m2; age 25.3±7.9 years). We analysed the recorded signals with a wavelet transform. For the first time, a method based on dynamical Bayesian inference was used to detect the effective phase connectivity and the underlying coupling functions between the SAS and BP signals. There are several new findings. Slow breathing with or without resistance increases the strength of the coupling between the respiratory and cardiac components of both measured signals. We also observed increases in the strength of the coupling between the respiratory component of the BP and the cardiac component of the SAS and vice versa. Slow breathing synchronises the SAS oscillations, between the brain hemispheres. It also diminishes the similarity of the coupling between all analysed pairs of oscillators, while inspiratory resistance partially reverses this phenomenon. BP–SAS and SAS–BP interactions may reflect changes in the overall biomechanical characteristics of the brain.


Author(s):  
Alexander B. Hansen ◽  
Justin Stevan Lawley ◽  
Caroline A. Rickards ◽  
Erin J. Howden ◽  
Satyam Sarma ◽  
...  

Spaceflight-associated neuro-ocular syndrome (SANS) involves unilateral or bilateral optic disc edema, widening of the optic nerve sheath, and posterior globe flattening. Due to posterior globe flattening, it is hypothesized that microgravity causes a disproportionate change in intracranial pressure (ICP) relative to intraocular pressure. Countermeasures capable of reducing ICP include thigh cuffs and breathing against inspiratory resistance. Due to the coupling of central venous (CVP) and intracranial pressure, we hypothesized that both ICP and CVP will be reduced during both countermeasures. In four male participants (32±13 yrs) who were previously implanted with Ommaya reservoirs for treatment of unrelated clinical conditions, ICP was measured invasively through these ports. Subjects were healthy at the time of testing. CVP was measured invasively by a peripherally inserted central catheter. Participants breathed through an Impedance Threshold Device (ITD, -7 cm.H2O) to generate negative intrathoracic pressure for five-mins, and subsequently, wore bilateral thigh cuffs at 30-mmHg for two-mins. Breathing through an ITD reduced both CVP (6±2 vs 3±1 mmHg; P=0.02) and ICP (16±3 vs 12±1 mmHg; P=0.04) compared to the supine posture, which was not observed during the free breathing condition (CVP, 6±2 vs 6±2 mmHg; P=0.87 and ICP, 15±3 vs 15±4 mmHg; P=0.68). Inflation of the thigh cuffs to 30-mmHg caused no meaningful reduction in CVP in all four individuals (5±4 vs 5±4 mmHg; P=0.1), coincident with a minimal reduction in ICP (15±3 vs 14±4 mmHg; P=0.13). The application of inspiratory resistance breathing resulted in reductions in both ICP and CVP, likely due to intrathoracic unloading.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Nathalie Holme ◽  
Alexander Rosenberg ◽  
Garen Anderson ◽  
Haley Barnes ◽  
Caroline Rickards

2019 ◽  
Vol 127 (5) ◽  
pp. 1206-1214 ◽  
Author(s):  
Pawel J. Winklewski ◽  
Jacek Wolf ◽  
Marcin Gruszecki ◽  
Magdalena Wszedybyl-Winklewska ◽  
Krzysztof Narkiewicz

Negative intrathoracic pressure (nITP) is generated by the respiratory muscles during inspiration to overcome inspiratory resistance, thus enabling lung ventilation. Recently developed noninvasive techniques have made it possible to assess the effects of nITP in real time in several physiological aspects such as systemic blood pressure (BP), intracranial pressure (ICP), and cerebral blood flow (CBF). It has been shown that nITP from 0 to −20 cmH2O elevates BP and diminishes ICP, which facilitates brain perfusion. The effects of nITP from −20 to −40 cmH2O on BP, ICP, and CBF remain largely unrecognized, yet even nITP at −40 cmH2O may facilitate CBF by diminishing ICP. Importantly, nITP from −20 to −40 cmH2O has been documented in adults in commonly encountered obstructive sleep apnea, which justifies research in this area. Recent revelations about interactions between ICP and BP have opened up new fields of research in physiological regulation and the pathophysiology of common diseases, such as hypertension, brain injury, and respiratory disorders. A better understanding of these interactions may translate directly into new therapies in various fields of clinical medicine.


Author(s):  
Jéssica Danielle Medeiros da Fonsêca ◽  
Luciana Fontes Silva Da Cunha Lima ◽  
Valéria Soraya De Farias Sales ◽  
Andrea Aliverti ◽  
Guilherme Augusto Freitas Fregonezi

Sign in / Sign up

Export Citation Format

Share Document