Modulation of pulmonary stretch receptors and airway resistance by parasympathetic efferents

1984 ◽  
Vol 57 (6) ◽  
pp. 1842-1849 ◽  
Author(s):  
C. A. Richardson ◽  
D. A. Herbert ◽  
R. A. Mitchell

Recording from pulmonary stretch receptors in the intact cervical vagus nerve revealed a novel interaction between stretch receptors and smooth muscle in the lungs of anesthetized paralyzed cats. Firing rates of pulmonary stretch receptors were modulated in step with the inflation-deflation cycle of the mechanical respirator, as expected. Firing rates of most slowly adapting receptors, but not rapidly adapting receptors, were also strongly modulated in step with the phrenic nerve activity even when the respirator was turned off and the cat motionless. The modulation of some receptors' firing rates by the inspiratory motor output was as great as the change in firing-rate in response to a lung inflation of 20 ml of air (one tidal volume). Atropine blocked the inspiratory-related modulation of slowly adapting/receptor firing rates; it did not block the inflation-related modulation. Pulmonary resistance was modulated in step with the inspiratory activity on the phrenic nerve. Hyperventilation to neural apnea (no phrenic nerve activity) reduced pulmonary resistance to its lowest level, a level equal to that produced by an injection of isoproterenol or atropine. Hypoxia during hypocapnic apnea caused bursts of inspiratory activity on the phrenic nerve accompanied by one-to-one increases in airway resistance. We conclude that the intrathoracic airway smooth muscle contracts with each neural inspiration, that the modulation of the pulmonary stretch receptors is due to a mechanical interaction with the intrathoracic airway smooth muscle, and that through the mechanical link with airway smooth muscle, stretch receptor sensitivity depends on inspiratory output, a closed loop.

1985 ◽  
Vol 58 (3) ◽  
pp. 911-920 ◽  
Author(s):  
R. A. Mitchell ◽  
D. A. Herbert ◽  
D. G. Baker

In anesthetized paralyzed open-chested cats ventilated with low tidal volumes at high frequency, we recorded phrenic nerve activity, transpulmonary pressure (TPP), and either the tension in an upper tracheal segment or the impulse activity in a pulmonary branch of the vagus nerve. The TPP and upper tracheal segment tension fluctuated with respiration, with peak pressure and tension paralleling phrenic nerve activity. Increased end-tidal CO2 or stimulation of the carotid chemoreceptors with sodium cyanide increased both TPP and tracheal segment tension during the increased activity of the phrenic nerve. Lowering end-tidal CO2 or hyperinflating the lungs to achieve neural apnea (lack of phrenic activity) caused a decrease in TPP and tracheal segment tension and abolished the inspiratory fluctuations. During neural apnea produced by lowering end-tidal CO2, lung inflation caused no further decrease in tracheal segment tension and TPP. Likewise, stimulation of the cervical sympathetics, which caused a reduction in TPP and tracheal segment tension during normal breathing, caused no further reduction in these parameters when the stimulation occurred during neural apnea. During neural apnea the tracheal segment tension and TPP were the same as those following the transection of the vagi or the administration of atropine (0.5 mg/kg). Numerous fibers in the pulmonary branch of the vagus nerve fired in synchrony with the phrenic nerve. Only these fibers had activity which paralleled changes in TPP and tracheal tension. We propose that the major excitatory input to airway smooth muscle arises from cholinergic nerves that fire during inspiration, which have preganglionic cell bodies in the ventral respiratory group in the region of the nucleus ambiguus and are driven by the same pattern generators that drive the phrenic and inspiratory intercostal motoneurons.


2017 ◽  
Vol 312 (2) ◽  
pp. L178-L185 ◽  
Author(s):  
William D. Wong ◽  
Lu Wang ◽  
Peter D. Paré ◽  
Chun Y. Seow

Taking a big breath is known to reverse bronchoconstriction induced by bronchochallenge in healthy subjects; this bronchodilatory effect of deep inspiration (DI) is diminished in asthmatics. The mechanism underlying the DI effect is not clear. Observations from experiments using isolated airway smooth muscle (ASM) preparations and airway segments suggest that straining of ASM due to DI could lead to bronchodilation, possibly due to strain-induced reduction in ASM contractility. However, factors external to the lung cannot be excluded as potential causes for the DI effect. Neural reflex initiated by stretch receptors in the lung are known to inhibit the broncho-motor tone and enhance vasodilatation; the former directly reduces airway resistance, and the latter facilitates removal of contractile agonists through the bronchial circulation. If the DI effect is solely mediated by factors extrinsic to the lung, the DI effect would be absent in isolated, nonperfused lungs. Here we examined the DI effect in freshly isolated, nonperfused sheep lungs. We found that imposition of DI on isolated lungs resulted in significant bronchodilation, that this DI effect was present only after the lungs were challenged with a contractile agonist (acetylcholine or histamine), and that the effect was independent of the difference in lung volume observed pre- and post-DI. We conclude that a significant portion of the bronchodilatory DI effect stems from factors internal to the lung related to the activation of ASM.


1991 ◽  
Vol 70 (2) ◽  
pp. 608-616 ◽  
Author(s):  
B. Haxhiu-Poskurica ◽  
W. A. Carlo ◽  
M. J. Miller ◽  
J. M. DiFiore ◽  
M. A. Haxhiu ◽  
...  

Stimulation of chemo-, irritant, and pulmonary C-fiber receptors reflexly constricts airway smooth muscle and alters ventilation in mature animals. These reflex responses of airway smooth muscle have, however, not been clearly characterized during early development. In this study we compared the maturation of reflex pathways regulating airway smooth muscle tone and ventilation in anesthetized, paralyzed, and artificially ventilated 2- to 3- and 10-wk-old piglets. Tracheal smooth muscle tension was measured from an open tracheal segment by use of a force transducer, and phrenic nerve activity was measured from a proximal cut end of the phrenic nerve. Inhalation of 7% CO2 caused a transient increase in tracheal tension in both age groups, whereas hypoxia caused no airway smooth muscle response in either group. The phrenic responses to 7% CO2 and 12% O2 were comparable in both age groups. Lung deflation and capsaicin (20 micrograms/kg iv) administration did not alter tracheal tension in the younger piglets but caused tracheal tension to increase by 87 +/- 28 and 31 +/- 10%, respectively, in the older animals (both P less than 0.05). In contrast, phrenic response to both stimuli was comparable between ages: deflation increased phrenic activity while capsaicin induced neural apnea. Laryngeal stimulation did not increase tracheal tension but induced neural apnea in both age groups. These data demonstrate that between 2 and 10 wk of life, piglets exhibit developmental changes in the reflex responses of airway smooth muscle situated in the larger airways in response to irritant and C-fiber but not chemoreceptor stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)


2007 ◽  
Vol 103 (5) ◽  
pp. 1696-1705 ◽  
Author(s):  
Jason H. T. Bates ◽  
Ana Cojocaru ◽  
Lennart K. A. Lundblad

We recently developed a computational model of an airway embedded in elastic parenchyma (Bates JH, Lauzon AM. J Appl Physiol 102: 1912–1920, 2007) that accurately mimics the time dependence of airway resistance on tidal volume and positive end-expiratory pressure (PEEP) following methacholine injection in normal animals. In the present study, we compared the model predictions of bronchodilation induced by a deep inflation (DI) of the lung following administration of the bronchial agonist methacholine to corresponding experimental measurements made in mice. We found that a DI in mice caused an immediate reduction in airway resistance when it was administered soon after intravenous injection of methacholine, while the airway smooth muscle was in the process of contracting. However, the magnitude of the reduction in resistance was greater and its subsequent rate of increase less than that predicted by the model. We found that this effect was most pronounced when the DI was given within ∼3 s following methacholine injection, again in contrast to the predictions of the model. The reduction of airway resistance was virtually independent of the rate of lung inflation during the DI, however, which agrees with model predictions. We conclude that while the model accounts for a substantial fraction of the post-DI reduction in airway resistance seen experimentally, there remain important differences between prediction and experiment that suggest that the effects of a DI are not simply due to eccentric contraction of the airway smooth muscle.


1999 ◽  
Vol 90 (3) ◽  
pp. 822-828 ◽  
Author(s):  
Robert H. Brown ◽  
Elizabeth M. Wagner

Background Propofol and ketamine have been purported to decrease bronchoconstriction during induction of anesthesia and intubation. Whether they act on airway smooth muscle or through neural reflexes has not been determined. We compared propofol and ketamine to attenuate the direct activation of airway smooth muscle by methacholine and limit neurally mediated bronchoconstriction (vagal nerve stimulation). Methods After approval from the institutional review board, eight sheep were anesthetized with pentobarbital, paralyzed, and ventilated. After left thoracotomy, the bronchial artery was cannulated and perfused. In random order, 5 mg/ml concentrations of propofol, ketamine, and thiopental were infused into the bronchial artery at rates of 0.06, 0.20, and 0.60 ml/min. After 10 min, airway resistance was measured before and after vagal nerve stimulation and methacholine given via the bronchial artery. Data were expressed as a percent of baseline response before infusion of drug and analyzed by analysis of variance with significance set at P< or =0.05. Results Systemic blood pressure was not affected by any of the drugs (P>0.46). Baseline airway resistance was not different among the three agents (P = 0.56) or by dose (P = 0.96). Infusion of propofol and ketamine into the bronchial artery caused a dose-dependent attenuation of the vagal nerve stimulation-induced bronchoconstriction to 26+/-11% and 8+/-2% of maximum, respectively (P<0.0001). In addition, propofol caused a significant decrease in the methacholine-induced bronchoconstriction to 43+/-27% of maximum at the highest concentration (P = 0.05) Conclusions The local bronchoprotective effects of ketamine and propofol on airways is through neurally mediated mechanisms. Although the direct effects on airway smooth muscle occur at high concentrations, these are unlikely to be of primary clinical relevance.


2008 ◽  
Vol 104 (6) ◽  
pp. 1601-1610 ◽  
Author(s):  
Ana Cojocaru ◽  
Charles G. Irvin ◽  
Hans C. Haverkamp ◽  
Jason H. T. Bates

Allergic inflammation is known to cause airway hyperresponsiveness in mice. However, it is not known whether inflammation affects the stiffness of the airway wall, which would alter the load against which the circumscribing smooth muscle shortens when activated. Accordingly, we measured the time course of airway resistance immediately following intravenous methacholine injection in acutely and chronically allergically inflamed mice. We estimated the effective stiffness of the airway wall in these animals by fitting to the airway resistance profiles a computational model of a dynamically narrowing airway embedded in elastic parenchyma. Effective airway wall stiffness was estimated from the model fit and was found not to change from control in either the acute or chronic inflammatory groups. However, the acutely inflamed mice were hyperresponsive compared with controls, which we interpret as reflecting increased delivery of methacholine to the airway smooth muscle through a leaky pulmonary endothelium. These results support the notion that acutely inflamed BALB/c mice represent an animal model of functionally normal airway smooth muscle in a transiently abnormal lung.


1993 ◽  
Vol 75 (2) ◽  
pp. 738-744 ◽  
Author(s):  
R. H. Moreno ◽  
C. Lisboa ◽  
J. C. Hogg ◽  
P. D. Pare

Airway smooth muscle can contract to 20% of its starting length when stimulated maximally and allowed to contract isotonically in vitro. In vivo airway smooth muscle contraction of this degree would result in widespread airway closure. We hypothesized that elastic loads related to cartilage stiffness and lung parenchyma-airway interdependence limit in vivo airway smooth muscle shortening. We measured pulmonary resistance in anesthetized tracheostomized New Zealand White rabbits before and after intravenous treatment with papain in a concentration that produced generalized cartilage softening. Papain treatment caused a significant increase in pulmonary resistance that was completely reversed by application of 4 cmH2O positive end-expiratory pressure and that was partially reversed by vagotomy. Papain pretreatment also resulted in a substantial alteration in the pulmonary resistance-dose relationship to intravenously administered acetylcholine. In addition, maximal resistance after the highest concentration of acetylcholine was greater in papain-treated animals than in the control animals, but the position of the dose-response relationship was not shifted (i.e., there was no change in the effective dose causing 50% maximal response). Application of 4 cmH2O positive end-expiratory pressure in untreated animals resulted in a marked decrease in the bronchoconstriction produced by an effective dose of acetylcholine causing 50% of maximal response, whereas application of 4 cmH2O negative end-expiratory pressure resulted in a marked enhancement of the bronchoconstrictor response to the same intravenous dose of acetylcholine. We conclude that cartilage elasticity and lung recoil are important determinants of the ability of airway smooth muscle to shorten and produce airway narrowing in vivo.


1987 ◽  
Vol 62 (5) ◽  
pp. 1912-1916 ◽  
Author(s):  
P. S. Clifford ◽  
L. B. Bell ◽  
F. A. Hopp ◽  
R. L. Coon

The Breuer-Hering reflex (BHR) reappears 12–14 wk after surgical lung denervation in beagle dogs (J. Appl. Physiol. 54: 1451–1456, 1983). To demonstrate that this is due to reinnervation of pulmonary stretch receptors, we recorded nerve activity from regenerated branches of the left vagus nerve in five beagle dogs. Ten days postdenervation the BHR was absent, whereas by 19 mo it was clearly present. Multifiber pulmonary afferent activity was observed in all five dogs with single-fiber activity observed in three. Sectioning the right vagus nerve did not alter the BHR, but sectioning all the regenerated branches of the left vagus abolished the reflex. In two additional dogs studied 17 mo postsurgery, recordings were made from few fiber nerve bundles of the left cervical vagus. Nerve activity was increased during gentle stroking of the surface of the left upper and lower lobes, indicating receptive fields in both lobes. These data demonstrate that reinnervation of pulmonary stretch receptors does occur and provides evidence that reinnervation of these receptors is responsible for return of the BHR after pulmonary denervation.


2014 ◽  
Vol 117 (7) ◽  
pp. 806-815 ◽  
Author(s):  
Michela Bullone ◽  
Mylène Chevigny ◽  
Marion Allano ◽  
James G. Martin ◽  
Jean-Pierre Lavoie

Morphometric analyses of endobronchial biopsies are commonly performed in asthma research but little is known about the technical and physiological parameters contributing to measurement variability. We investigated factors potentially affecting biopsy size, quality, and airway smooth muscle (ASM) content in heaves, an asthma-like disease of horses. Horses with heaves in clinical exacerbation ( n = 6) or remission ( n = 6) from the disease and six controls were studied using a crossover design. The effect of disease status, age, bronchodilation, biopsy forceps type, and carina size on total biopsy area (Atot), ASM area (AASM), ASM% (AASM/Atot), and histologic quality were assessed. Concordance among different measuring techniques was also assessed. Compared with other groups, horses with heaves in exacerbation yielded larger biopsies ( P < 0.05). Better quality biopsies were obtained from carinae of small size compared with large ones ( P = 0.02), and carina size and forceps type significantly affected the ASM content of the biopsy (interaction, P < 0.05). AASM increased with age only in heaves-affected horses ( r = 0.9, P < 0.05), and ASM% was negatively correlated with pulmonary resistance at 5 Hz in heaves-affected horses ( r = −0.74, P = 0.01), likely because of the increased thickness of the extracellular matrix layer in this group ( P = 0.01). In conclusion, disease status, carina thickness, and the forceps used may significantly affect biopsy size, quality, and ASM content. Endobronchial biopsies are not appropriate samples for ASM quantification in heaves, and studies measuring ASM mass should not be compared when measuring techniques differ.


Sign in / Sign up

Export Citation Format

Share Document