Sympathetic neural discharge and vascular resistance during exercise in humans

1989 ◽  
Vol 66 (5) ◽  
pp. 2472-2478 ◽  
Author(s):  
D. R. Seals

The purpose of this study was to determine the relationship between changes in efferent muscle sympathetic nerve activity (MSNA) to the lower leg and calf vascular resistance (CVR) during isometric exercise in humans. We made intraneural (microneurographic) determinations of MSNA in the right leg (peroneal nerve) while simultaneously measuring calf blood flow to the left leg, arterial pressure, and heart rate in 10 subjects before (control), during, and after (recovery) isometric handgrip exercise performed for 2.5 min at 15, 25, and 35% of maximal voluntary contraction (MVC). Heart rate and arterial pressure increased above control within the initial 30 s of handgrip at all levels, and the magnitudes of the increases at end contraction were proportional to the intensity of the exercise. In general, neither MSNA nor CVR increased significantly above control levels during handgrip at 15% MVC. Similarly, neither variable increased above control during the initial 30 s of handgrip at 25 and 35% MVC; however, during the remainder of the contraction period, progressive, parallel increases were observed in MSNA and CVR (P less than 0.05). The correlation coefficients relating changes in MSNA to changes in CVR for the individual subjects averaged 0.63 +/- 0.07 (SE) (range 0.30–0.91) and 0.94 +/- 0.06 (range 0.80–0.99) for the 25 and 35% MVC levels, respectively. During recovery, both MSNA and CVR returned rapidly toward control levels. These findings demonstrate that muscle sympathetic nerve discharge and vascular resistance in the lower leg are tightly coupled during and after isometric arm exercise in humans. Furthermore, the exercise-induced adjustments in the two variables are both contraction intensity and time dependent.

2000 ◽  
Vol 279 (1) ◽  
pp. H245-H249 ◽  
Author(s):  
Chester A. Ray ◽  
Dario I. Carrasco

The purpose of this study was to determine whether isometric handgrip (IHG) training reduces arterial pressure and whether reductions in muscle sympathetic nerve activity (MSNA) mediate this drop in arterial pressure. Normotensive subjects were assigned to training ( n = 9), sham training ( n = 7), or control ( n = 8) groups. The training protocol consisted of four 3-min bouts of IHG exercise at 30% of maximal voluntary contraction (MVC) separated by 5-min rest periods. Training was performed four times per week for 5 wk. Subjects' resting arterial pressure and heart rate were measured three times on 3 consecutive days before and after training, with resting MSNA (peroneal nerve) recorded on the third day. Additionally, subjects performed IHG exercise at 30% of MVC to fatigue followed by muscle ischemia. In the trained group, resting diastolic (67 ± 1 to 62 ± 1 mmHg) and mean arterial pressure (86 ± 1 to 82 ± 1 mmHg) significantly decreased, whereas systolic arterial pressure (116 ± 3 to 113 ± 2 mmHg), heart rate (67 ± 4 to 66 ± 4 beats/min), and MSNA (14 ± 2 to 15 ± 2 bursts/min) did not significantly change following training. MSNA and cardiovascular responses to exercise and postexercise muscle ischemia were unchanged by training. There were no significant changes in any variables for the sham training and control groups. The results indicate that IHG training is an effective nonpharmacological intervention in lowering arterial pressure.


1992 ◽  
Vol 72 (3) ◽  
pp. 1039-1043 ◽  
Author(s):  
V. K. Somers ◽  
K. C. Leo ◽  
R. Shields ◽  
M. Clary ◽  
A. L. Mark

Recent evidence indicates that muscle ischemia and activation of the muscle chemoreflex are the principal stimuli to sympathetic nerve activity (SNA) during isometric exercise. We postulated that physical training would decrease muscle chemoreflex stimulation during isometric exercise and thereby attenuate the SNA response to exercise. We investigated the effects of 6 wk of unilateral handgrip endurance training on the responses to isometric handgrip (IHG: 33% of maximal voluntary contraction maintained for 2 min). In eight normal subjects the right arm underwent exercise training and the left arm sham training. We measured muscle SNA (peroneal nerve), heart rate, and blood pressure during IHG before vs. after endurance training (right arm) and sham training (left arm). Maximum work to fatigue (an index of training efficacy) was increased by 1,146% in the endurance-trained arm and by only 40% in the sham-trained arm. During isometric exercise of the right arm, SNA increased by 111 +/- 27% (SE) before training and by only 38 +/- 9% after training (P less than 0.05). Endurance training did not significantly affect the heart rate and blood pressure responses to IHG. We also measured the SNA response to 2 min of forearm ischemia after IHG in five subjects. Endurance training also attenuated the SNA response to postexercise forearm ischemia (P = 0.057). Sham training did not significantly affect the SNA responses to IHG or forearm ischemia. We conclude that endurance training decreases muscle chemoreflex stimulation during isometric exercise and thereby attenuates the sympathetic nerve response to IHG.


1992 ◽  
Vol 73 (4) ◽  
pp. 1523-1529 ◽  
Author(s):  
C. A. Ray ◽  
R. F. Rea ◽  
M. P. Clary ◽  
A. L. Mark

Previous studies of muscle sympathetic nerve activity (MSNA) during static exercise have employed predominantly the arms. These studies have revealed striking increases in arm and leg MSNA during static handgrip (SHG) and postexercise circulatory arrest (PECA). The purpose of this study was to examine MSNA during static leg exercise (SLE) at intensities and duration commonly used during SHG followed by PECA. During 2 min of SLE (static knee extension) at 10% of maximal voluntary contraction (MVC; n = 18) in the sitting position, mean arterial pressure and heart rate increased significantly. Surprisingly, MSNA in the contralateral leg did not increase above control levels during SLE but rather decreased (23 +/- 5%; P < 0.05) during the 1st min of SLE at 10% MVC. We compared MSNA responses to SHG and SLE (n = 8) at 30% MVC. SHG and SLE elicited comparable increases (P < 0.05) in arterial pressure and heart rate, but SHG elicited significant increases in MSNA, whereas SLE did not. During PECA after SHG and SLE, mean arterial pressure remained significantly above control. However, MSNA was unchanged during PECA after SLE but was significantly greater than control during PECA after SHG. Because previous studies have indicated differences in MSNA responses to the arm and leg, we measured arm and leg MSNA simultaneously in six subjects during SLE at 20% MVC and PECA. During SLE and PECA, MSNA in the contralateral arm and leg did not differ significantly from each other.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 273 (5) ◽  
pp. H2436-H2441 ◽  
Author(s):  
Chester A. Ray ◽  
Keith M. Hume ◽  
Kathryn H. Gracey ◽  
Edward T. Mahoney

Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 ± 0.4 to 23.1 ± 0.8°C ( P = 0.001). Time to fatigue was not different during the control and cold trials (156 ± 11 and 154 ± 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise ( P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.


2001 ◽  
Vol 90 (2) ◽  
pp. 624-629 ◽  
Author(s):  
Kelly J. Doerzbacher ◽  
Chester A. Ray

Previous studies suggest that prostaglandins may contribute to exercise-induced increases in muscle sympathetic nerve activity (MSNA). To test this hypothesis, MSNA was measured at rest and during exercise before and after oral administration of ketoprofen, a cyclooxygenase inhibitor, or placebo. Twenty-one subjects completed two bouts of graded dynamic and isometric handgrip to fatigue. Each exercise bout was followed by 2 min of postexercise muscle ischemia. The second exercise bouts were performed after 60 min of rest in which 11 subjects were given ketoprofen (300 mg) and 10 subjects received a placebo. Ketoprofen significantly lowered plasma thromboxane B2 in the drug group (from 36 ± 6 to 22 ± 3 pg/ml, P < 0.04), whereas thromboxane B2 in the placebo group increased from 40 ± 5 to 61 ± 9 pg/ml from trial 1 to trial 2 ( P < 0.008). Ketoprofen and placebo did not change sympathetic and cardiovascular responses to dynamic handgrip, isometric handgrip, and postexercise muscle ischemia. There was no relationship between thromboxane B2concentrations and MSNA or arterial pressure responses during both exercise modes. The data indicate that physiological increases or decreases in prostaglandins do not alter exercise-induced increases in MSNA and arterial pressure in humans. These findings suggest that contraction-induced metabolites other than prostaglandins mediate MSNA responses to exercise in humans.


2006 ◽  
Vol 291 (1) ◽  
pp. H210-H215 ◽  
Author(s):  
Anne Houssière ◽  
Boutaina Najem ◽  
Nicolas Cuylits ◽  
Sophie Cuypers ◽  
Robert Naeije ◽  
...  

Peripheral chemoreflex inhibition with hyperoxia decreases sympathetic nerve traffic to muscle circulation [muscle sympathetic nerve activity (MSNA)]. Hyperoxia also decreases lactate production during exercise. However, hyperoxia markedly increases the activation of sensory endings in skeletal muscle in animal studies. We tested the hypothesis that hyperoxia increases the MSNA and mean blood pressure (MBP) responses to isometric exercise. The effects of breathing 21% and 100% oxygen at rest and during isometric handgrip at 30% of maximal voluntary contraction on MSNA, heart rate (HR), MBP, blood lactate (BL), and arterial O2 saturation (SaO2) were determined in 12 healthy men. The isometric handgrips were followed by 3 min of postexercise circulatory arrest (PE-CA) to allow metaboreflex activation in the absence of other reflex mechanisms. Hyperoxia lowered resting MSNA, HR, MBP, and BL but increased SaO2 compared with normoxia (all P < 0.05). MSNA and MBP increased more when exercise was performed in hyperoxia than in normoxia (MSNA: hyperoxic exercise, 255 ± 100% vs. normoxic exercise, 211 ± 80%, P = 0.04; and MBP: hyperoxic exercise, 33 ± 9 mmHg vs. normoxic exercise, 26 ± 10 mmHg, P = 0.03). During PE-CA, MSNA and MBP remained elevated (both P < 0.05) and to a larger extent during hyperoxia than normoxia ( P < 0.05). Hyperoxia enhances the sympathetic and blood pressure (BP) reactivity to metaboreflex activation. This is due to an increase in metaboreflex sensitivity by hyperoxia that overrules the sympathoinhibitory and BP lowering effects of chemoreflex inhibition. This occurs despite a reduced lactic acid production.


1994 ◽  
Vol 266 (1) ◽  
pp. H79-H83 ◽  
Author(s):  
C. A. Ray ◽  
N. H. Secher ◽  
A. L. Mark

To evaluate modulation of muscle sympathetic nerve activity (MSNA) during posthandgrip muscle ischemia (PHGMI), subjects performed 2 min of isometric handgrip at 33% of maximal voluntary contraction (MVC) followed by 2 min of PHGMI produced by forearm vascular occlusion. The response to PHGMI was studied in the absence and again during the addition of contralateral rhythmic handgrip (RHG; 40 times/min) at 15% (n = 6) and 30% (n = 10) MVC during the second minute of the PHGMI. Additionally, to isolate the effect of central command, response to PHGMI was studied during attempted RHG after sensory nerve blockade (n = 5). RHG for 2 min at 15 and 30% MVC and attempted RHG for 2 min did not increase MSNA. Isometric handgrip elicited an 130 +/- 48% increase in MSNA (P < 0.05), which was maintained during PHGMI. RHG at 15 and 30% MVC elicited an attenuation of MSNA (-10 +/- 7% and -14 +/- 6%, respectively) when performed during the second minute of PHGMI (P < 0.05). In contrast, attempted RHG did not significantly affect MSNA during PHGMI. The findings demonstrate modulation of MSNA during activation of the muscle metaboreflex. The attenuation of metaboreceptor-mediated increases in MSNA appear to be the result of mechanosensitive muscle afferents and not central command.


2010 ◽  
Vol 299 (1) ◽  
pp. R80-R91 ◽  
Author(s):  
Lindsay D. DeBeck ◽  
Stewart R. Petersen ◽  
Kelvin E. Jones ◽  
Michael K. Stickland

Previous research has suggested a relationship between low-frequency power of heart rate variability (HRV; LF in normalized units, LFnu) and muscle sympathetic nerve activity (MSNA). However, investigations have not systematically controlled for breathing, which can modulate both HRV and MSNA. Accordingly, the aims of this experiment were to investigate the possibility of parallel responses in MSNA and HRV (LFnu) to selected acute stressors and the effect of controlled breathing. After data were obtained at rest, 12 healthy males (28 ± 5 yr) performed isometric handgrip exercise (30% maximal voluntary contraction) and the cold pressor test in random order, and were then exposed to hypoxia (inspired fraction of O2 = 0.105) for 7 min, during randomly assigned spontaneous and controlled breathing conditions (20 breaths/min, constant tidal volume, isocapnic). MSNA was recorded from the peroneal nerve, whereas HRV was calculated from ECG. At rest, controlled breathing did not alter MSNA but decreased LFnu ( P < 0.05 for all) relative to spontaneous breathing. MSNA increased in response to all stressors regardless of breathing. LFnu increased with exercise during both breathing conditions. During cold pressor, LFnu decreased when breathing was spontaneous, whereas in the controlled breathing condition, LFnu was unchanged from baseline. Hypoxia elicited increases in LFnu when breathing was controlled, but not during spontaneous breathing. The parallel changes observed during exercise and controlled breathing during hypoxia suggest that LFnu may be an indication of sympathetic outflow in select conditions. However, since MSNA and LFnu did not change in parallel with all stressors, a cautious approach to the use of LFnu as a marker of sympathetic activity is warranted.


1993 ◽  
Vol 75 (1) ◽  
pp. 273-278 ◽  
Author(s):  
K. P. Davy ◽  
W. G. Herbert ◽  
J. H. Williams

The purpose of this study was to test the hypothesis that prostaglandins participate in metaboreceptor stimulation of the pressor response to sustained isometric handgrip contraction in humans. To accomplish this, mean arterial pressure, heart rate (n = 10), and plasma norepinephrine levels (n = 8) were measured in healthy male subjects during sustained isometric handgrip at 40% of maximal voluntary contraction force to exhaustion and during a period of postcontraction muscle ischemia. The subjects were given a double-blind and counterbalanced administration of placebo or a single 100-mg dose of indomethacin. A period of 1 wk was allowed for systemic clearance of the drug. Mean arterial pressure increased 25 +/- 5 vs. 22 +/- 4 mmHg during the final minute of isometric handgrip contraction and 26 +/- 2 vs. 21 +/- 5 during the last minute of postcontraction muscle ischemia in the placebo vs. the indomethacin trial (P > 0.05), respectively. Heart rate was increased 21 +/- 4 vs. 17 +/- 3 beats/min during the final minute of isometric handgrip contraction in the placebo vs. the indomethacin trial (P > 0.05), respectively, and returned to control values during postcontraction muscle ischemia. Plasma norepinephrine levels increased 343 +/- 89 vs. 289 +/- 89 pg/ml after isometric handgrip contraction and 675 +/- 132 vs. 632 +/- 132 pg/ml after postcontraction muscle ischemia (P > 0.05) in the placebo vs. the indomethacin trial, respectively. These results suggest that prostaglandin inhibition does not significantly modulate muscle contraction-induced stimulation of mean arterial pressure, heart rate, or plasma norepinephrine levels.


Sign in / Sign up

Export Citation Format

Share Document