Sensitivity of bioelectrical impedance to detect changes in human body composition

1989 ◽  
Vol 67 (4) ◽  
pp. 1643-1648 ◽  
Author(s):  
R. Ross ◽  
L. Leger ◽  
P. Martin ◽  
R. Roy

The purpose of this study was to compare the estimates of lean body mass (LBM) and percent body fat (%BF), as predicted by bioelectrical impedance (BIA) and sum of skinfolds (SF), with those derived by hydrostatic weighing (HW) obtained before and after a 10-wk diet and exercise regimen. The experimental (E) group consisted of 17 healthy male subjects; 20 healthy males served as the control (C) group. Post hoc Scheffe contrasts computed on E group data indicated that, for both LBM and %BF, the Lukaski and Segal BIA equations, as well as the Durnin SF equation, derived mean values that were not significantly different (0.05 significance level) from HW in both pre- and postregimen conditions. For LBM, the same equations derived the following significant (P less than 0.01) correlation coefficients for both pre- and postregimen data: Lukaski, 0.87 and 0.85; Segal, 0.89 and 0.87; and Durnin, 0.90 and 0.88. For %BF, the correlation coefficients were slightly lower but remained statistically significant (P less than 0.01). The findings of this study suggest that the BIA method, by use of either the Lukaski or Segal prediction equations, is a valid means of predicting changes in human body composition as measured by the Siri transformation of body density.

1999 ◽  
Vol 19 (8) ◽  
pp. 1179-1188 ◽  
Author(s):  
Sufia Islam ◽  
Iqbal Kabir ◽  
Mohammad A. Wahed ◽  
Michael I. Goran ◽  
Dilip Mahalanabis ◽  
...  

2003 ◽  
Vol 35 (Supplement 1) ◽  
pp. S147
Author(s):  
K OHKAWARA ◽  
K TANAKA ◽  
G J. HOLLAND ◽  
S LOY ◽  
Y NAKATA ◽  
...  

1985 ◽  
Vol 58 (5) ◽  
pp. 1565-1571 ◽  
Author(s):  
K. R. Segal ◽  
B. Gutin ◽  
E. Presta ◽  
J. Wang ◽  
T. B. Van Itallie

This study 1) further validated the relationship between total body electrical conductivity (TOBEC) and densitometrically determined lean body mass (LBMd) and 2) compared with existing body composition techniques (densitometry, total body water, total body potassium, and anthropometry) two new electrical methods for the estimation of LBM: TOBEC, a uniform current induction method, and bioelectrical impedance analysis (BIA), a localized current injection method. In a sample of 75 male and female subjects ranging from 4.9 to 54.9% body fat the correlation between LBMd and LBM predicted from TOBEC by use of a previously developed regression equation was extremely strong (r = 0.962), thus confirming the validity of the TOBEC method. LBM predicted from BIA by use of prediction equations provided with the instrument also correlated with LBMd (r = 0.912) but overestimated LBM compared with LBMd in obese subjects. However, no such systematic error was apparent when new prediction equations derived from this heterogeneous sample of subjects were applied. Thus the TOBEC and BIA methods, which are based on the differing electrical properties of lean tissue and fat and which are convenient, rapid, and safe, correlate well with more cumbersome human body composition techniques.


2000 ◽  
Vol 80 (2) ◽  
pp. 649-680 ◽  
Author(s):  
Kenneth J. Ellis

In vivo methods used to study human body composition continue to be developed, along with more advanced reference models that utilize the information obtained with these technologies. Some methods are well established, with a strong physiological basis for their measurement, whereas others are much more indirect. This review has been structured from the methodological point of view to help the reader understand what can be examined with each technique. The associations between the various in vivo methods (densitometry, dilution, bioelectrical impedance and conductance, whole body counting, neutron activation, X-ray absorptiometry, computer tomography, and magnetic resonance imaging) and the five-level multicompartment model of body composition are described, along with the limitations and advantages of each method. This review also provides an overview of the present status of this field of research in human biology, including examples of reference body composition data for infants, children, adolescents, and adults.


2002 ◽  
Vol 26 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Paul R. Buzzell ◽  
Valerie M. Chamberlain ◽  
Stephen J. Pintauro

This study examined the effectiveness of a series of Web-based, multimedia tutorials on methods of human body composition analysis. Tutorials were developed around four body composition topics: hydrodensitometry (underwater weighing), dual-energy X-ray absorptiometry, bioelectrical impedance analysis, and total body electrical conductivity. Thirty-two students enrolled in the course were randomly assigned to learn the material through either the Web-based tutorials only (“Computer”), a traditional lecture format (“Lecture”), or lectures supplemented with Web-based tutorials (“Both”). All students were administered a validated pretest before randomization and an identical posttest at the completion of the course. The reliability of the test was 0.84. The mean score changes from pretest to posttest were not significantly different among the groups (65.4 ± 17.31, 78.82 ± 21.50, and 76 ± 21.22 for the Computer, Both, and Lecture groups, respectively). Additionally, a Likert-type assessment found equally positive attitudes toward all three formats. The results indicate that Web-based tutorials are as effective as the traditional lecture format for teaching these topics.


2003 ◽  
Vol 52 (4) ◽  
pp. 443-453 ◽  
Author(s):  
KAZUNORI OHKAWARA ◽  
KIYOJI TANAKA ◽  
YOSHIO NAKATA ◽  
DONG JUN LEE ◽  
SEUNG WAN WEE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document