scholarly journals The effectiveness of web-based, multimedia tutorials for teaching methods of human body composition analysis

2002 ◽  
Vol 26 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Paul R. Buzzell ◽  
Valerie M. Chamberlain ◽  
Stephen J. Pintauro

This study examined the effectiveness of a series of Web-based, multimedia tutorials on methods of human body composition analysis. Tutorials were developed around four body composition topics: hydrodensitometry (underwater weighing), dual-energy X-ray absorptiometry, bioelectrical impedance analysis, and total body electrical conductivity. Thirty-two students enrolled in the course were randomly assigned to learn the material through either the Web-based tutorials only (“Computer”), a traditional lecture format (“Lecture”), or lectures supplemented with Web-based tutorials (“Both”). All students were administered a validated pretest before randomization and an identical posttest at the completion of the course. The reliability of the test was 0.84. The mean score changes from pretest to posttest were not significantly different among the groups (65.4 ± 17.31, 78.82 ± 21.50, and 76 ± 21.22 for the Computer, Both, and Lecture groups, respectively). Additionally, a Likert-type assessment found equally positive attitudes toward all three formats. The results indicate that Web-based tutorials are as effective as the traditional lecture format for teaching these topics.

1999 ◽  
Vol 19 (8) ◽  
pp. 1179-1188 ◽  
Author(s):  
Sufia Islam ◽  
Iqbal Kabir ◽  
Mohammad A. Wahed ◽  
Michael I. Goran ◽  
Dilip Mahalanabis ◽  
...  

1993 ◽  
Vol 75 (1) ◽  
pp. 162-166 ◽  
Author(s):  
L. C. Lands ◽  
C. Gordon ◽  
O. Bar-Or ◽  
C. J. Blimkie ◽  
R. M. Hanning ◽  
...  

Body composition analysis is an important component of nutritional assessment in cystic fibrosis (CF). No gold standard of measurement exists, and techniques applicable to healthy populations may be unsuitable for CF patients. We assessed lean body mass (LBM) in 12 children with CF by skinfold (SK) measurements, bioelectrical impedance analysis (BIA), and dual-photon absorptiometry (DPA) and repeated these measures in 10 subjects 6 mo later. SK and DPA measures in eight older CF patients and eight healthy controls were compared to evaluate any effect of disease on estimates of LBM by use of DPA. Good agreement between the measures was seen at baseline and 6 mo by use of concordance plots. However, the limits of agreement between measures ranged up to 19% of SK-derived LBM measures (baseline: SK and DPA, 2.63 to -3.93 kg; SK and BIA, 2.36 to -1.24 kg; BIA and DPA, 1.88 to -4.28 kg; 6 mo: SK and DPA, 2.10 to -3.58 kg; SK and BIA, 6.28 to -5.49 kg; BIA and DPA, 5.53 to -7.79 kg). The change in LBM over 6 mo did not correlate among the three measures. Only BIA change in LBM correlated with weight change (r = 0.716, P < 0.02), probably due to the inclusion of weight in the regression equations for determining LBM from impedance. The relationship between SK and DPA measures did not differ between the CF and control groups, suggesting that there was no effect of disease on the DPA measure. The results suggest that none of these methods is precise enough to follow short-term changes in the nutritional status of CF patients longitudinally.


1985 ◽  
Vol 58 (5) ◽  
pp. 1565-1571 ◽  
Author(s):  
K. R. Segal ◽  
B. Gutin ◽  
E. Presta ◽  
J. Wang ◽  
T. B. Van Itallie

This study 1) further validated the relationship between total body electrical conductivity (TOBEC) and densitometrically determined lean body mass (LBMd) and 2) compared with existing body composition techniques (densitometry, total body water, total body potassium, and anthropometry) two new electrical methods for the estimation of LBM: TOBEC, a uniform current induction method, and bioelectrical impedance analysis (BIA), a localized current injection method. In a sample of 75 male and female subjects ranging from 4.9 to 54.9% body fat the correlation between LBMd and LBM predicted from TOBEC by use of a previously developed regression equation was extremely strong (r = 0.962), thus confirming the validity of the TOBEC method. LBM predicted from BIA by use of prediction equations provided with the instrument also correlated with LBMd (r = 0.912) but overestimated LBM compared with LBMd in obese subjects. However, no such systematic error was apparent when new prediction equations derived from this heterogeneous sample of subjects were applied. Thus the TOBEC and BIA methods, which are based on the differing electrical properties of lean tissue and fat and which are convenient, rapid, and safe, correlate well with more cumbersome human body composition techniques.


Sign in / Sign up

Export Citation Format

Share Document