Adenosine prevents phorbol ester injury in rabbit lungs: role of leukotrienes and TNF

1991 ◽  
Vol 71 (5) ◽  
pp. 1949-1955 ◽  
Author(s):  
J. D. Bradley ◽  
P. B. Zanaboni ◽  
R. O. Webster ◽  
L. J. Baudendistel ◽  
T. E. Dahms

The objective of this study was to determine whether adenosine (ADO) prevents phorbol myristate acetate- (PMA) induced lung injury by modulating peptidoleukotrienes (LT) and/or tumor necrosis factor (TNF) production. PMA significantly increased pulmonary vascular resistance (PVR, 275 +/- 4 to 447 +/- 30 cmH2O.1–1.min) and microvascular filtration coefficient.(Kf, 0.024 +/- 0.002 to 0.040 +/- 0.006 g.min-1.cmH2O-1) in isolated blood-perfused rabbit lungs. ADO (5 mumol/min) blocked the increases in PVR (257 +/- 9 to 283 +/- 26) and Kf (0.028 +/- 0.005 to 0.018 +/- 0.002). After PMA (30 min), perfusate levels of LTC4 + LTD4 increased by 15.3 +/- 2.1 pg/ml; LTE4 increased by 15.1 +/- 4.1 pg/ml. ADO reduced the increase in LTC4 + LTD4 to 2.7 +/- 6.1 pg/ml, but total LT increased by 31.9 +/- 16.6 pg/ml, implying that ADO enhanced the conversion of LTC4 and LTD4 to LTE4. MK-886 (L663,536), an LT synthesis inhibitor, blocked the increase in total LT (6.1 +/- 13.9 pg/ml) but did not reduce the PMA-induced increase in Kf (0.022 +/- 0.003 to 0.035 +/- 0.005) or PVR (238 +/- 11 to 495 +/- 21). After PMA administration, perfusate TNF levels were not different from the 10-fold increase observed in control experiments and were not reduced by ADO or MK-886. TNF production was independent of perfusate blood components and presumably due to low levels of endotoxin in the perfusate (70–90 ng/ml). These results indicate that ADO does not protect against PMA-induced acute lung injury by altering circulating levels of LT or TNF.

1992 ◽  
Vol 73 (2) ◽  
pp. 618-624 ◽  
Author(s):  
T. Koizumi ◽  
K. Kubo ◽  
T. Kobayashi ◽  
M. Sekiguchi

To examine the role of thromboxane (Tx) A2 in the pathogenesis of acute lung injury caused by tumor necrosis factor alpha (TNF), we tested the effects of OKY-046, a selective thromboxane synthase inhibitor, on pulmonary hemodynamics, lung lymph balance, circulating leukocytes, arterial blood gas analysis, and TxA2 (as TxB2) and prostacyclin (as 6-keto-prostaglandin F1 alpha) levels in plasma and lung lymph after TNF infusion in awake sheep. Infusion of human recombinant TNF (3.5 micrograms/kg) into a chronically instrumented awake sheep caused a transient increase in pulmonary arterial pressure (Ppa). The Ppa peaked within 15 min of the start of TNF infusion from 23.3 +/- 1.1 (SE) cmH2O of baseline to 42.3 +/- 2.3 cmH2O and then decreased toward baseline. The pulmonary hypertension was accompanied by transient hypoxemia, peripheral leukopenia, and the increases in TxB2 in plasma and lung lymph. These changes were followed by an increase in flow of protein-rich lung lymph, consistent with an increase in pulmonary microvascular permeability. OKY-046 significantly prevented the rises of Ppa and TxB2 concentrations in plasma and lung lymph during early phase after TNF infusion. OKY-046, however, did not attenuate the increase of lung lymph flow, transient hypoxemia, and leukopenia. From these data, and by comparison with our previous studies of OKY-046-pretreated sheep during endotoxemia, we conclude that TxA2 has an important role of the increase in the early pulmonary hypertension, but it is not related to the early hypoxemia, leukopenia, and lung lymph balances in TNF-induced lung injury.(ABSTRACT TRUNCATED AT 250 WORDS)


Blood ◽  
2000 ◽  
Vol 96 (7) ◽  
pp. 2628-2631 ◽  
Author(s):  
Martin Leverkus ◽  
Henning Walczak ◽  
Alex McLellan ◽  
Hans-Werner Fries ◽  
Gabi Terbeck ◽  
...  

Dendritic cells (DCs) disappear from lymph nodes 1 to 2 days after antigen presentation, presumably by apoptosis. To evaluate the role of death ligands in elimination of DCs, we analyzed the sensitivity of human DCs to CD95 ligand (CD95L) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We found mature DCs to be resistant to killing via CD95L or TRAIL, whereas only immature DCs were partially sensitive. However, all DC populations expressed CD95, TRAIL-R2, and TRAIL-R3 at comparable levels, suggesting that sensitivity to death ligand-induced DC apoptosis is not regulated at the receptor level. Interestingly, mature DCs highly expressed the caspase 8 inhibitory protein cFLIP, whereas only low levels were detected in immature DCs. Thus, death ligand sensitivity proved to be dependent on DC maturation and inversely correlated with expression levels of cFLIP. Induction of apoptosis by TRAIL or CD95L does not seem to play a role in the elimination of mature DCs, but instead might serve to regulate immature DC populations.


Author(s):  
Aggeliki Sfika ◽  
Eleftheria Letsiou ◽  
Matina Kardara ◽  
Nikolaos Maniatis ◽  
Charis Roussos ◽  
...  

1997 ◽  
Vol 26 (4) ◽  
pp. 647-656 ◽  
Author(s):  
Apostolos K. Tassiopoulos ◽  
Robert E. Carlin ◽  
Yuqi Gao ◽  
Alessia Pedoto ◽  
Christine M. Finck ◽  
...  

1992 ◽  
Vol 145 (3) ◽  
pp. 632-639 ◽  
Author(s):  
Arthur P. Wheeler ◽  
William D. Hardie ◽  
Gordon R. Bernard

Blood ◽  
2000 ◽  
Vol 96 (7) ◽  
pp. 2628-2631 ◽  
Author(s):  
Martin Leverkus ◽  
Henning Walczak ◽  
Alex McLellan ◽  
Hans-Werner Fries ◽  
Gabi Terbeck ◽  
...  

Abstract Dendritic cells (DCs) disappear from lymph nodes 1 to 2 days after antigen presentation, presumably by apoptosis. To evaluate the role of death ligands in elimination of DCs, we analyzed the sensitivity of human DCs to CD95 ligand (CD95L) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We found mature DCs to be resistant to killing via CD95L or TRAIL, whereas only immature DCs were partially sensitive. However, all DC populations expressed CD95, TRAIL-R2, and TRAIL-R3 at comparable levels, suggesting that sensitivity to death ligand-induced DC apoptosis is not regulated at the receptor level. Interestingly, mature DCs highly expressed the caspase 8 inhibitory protein cFLIP, whereas only low levels were detected in immature DCs. Thus, death ligand sensitivity proved to be dependent on DC maturation and inversely correlated with expression levels of cFLIP. Induction of apoptosis by TRAIL or CD95L does not seem to play a role in the elimination of mature DCs, but instead might serve to regulate immature DC populations.


Sign in / Sign up

Export Citation Format

Share Document