Estrogen replacement in middle-aged women: thermoregulatory responses to exercise in the heat

1992 ◽  
Vol 73 (4) ◽  
pp. 1238-1245 ◽  
Author(s):  
C. G. Tankersley ◽  
W. C. Nicholas ◽  
D. R. Deaver ◽  
D. Mikita ◽  
W. L. Kenney

Thermoregulatory, cardiovascular, and body fluid responses during exercise in the heat were tested in five middle-aged (48 +/- 2 yr) women before and after 14–23 days of estrogen replacement therapy (ERT). The heat and exercise challenge consisted of a 40-min rest period followed by semirecumbent cycle exercise (approximately 40% maximal O2 uptake) for 60 min. At rest, the ambient temperature was elevated from a thermoneutral (dry bulb temperature 25 degrees C; wet bulb temperature 17.5 degrees C) to a warm humid (dry bulb temperature 36 degrees C; wet bulb temperature 27.5 degrees C) environment. Esophageal (Tes) and rectal (Tre) temperatures were measured to estimate body core temperature while arm blood flow and sweating rate were measured to assess the heat loss response. Mean arterial pressure and heart rate were measured to evaluate the cardiovascular response. Blood samples were analyzed for hematocrit (Hct), hemoglobin ([Hb]), plasma 17 beta-estradiol (E2), progesterone (P4), protein, and electrolyte concentrations. Plasma [E2] was significantly (P < 0.05) elevated by ERT without affecting the plasma [P4] levels. After ERT, Tes and Tre were significantly (P < 0.05) depressed by approximately 0.5 degrees C, and the Tes threshold for the onset of arm blood flow and sweating rate was significantly (P < 0.05) lower during exercise. After ERT, heart rate during exercise was significantly lower (P < 0.05) without notable variation in mean arterial pressure. Isotonic hemodilution occurred with ERT evident by significant (P < 0.05) reductions in Hct and [Hb], whereas plasma tonicity remained unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)

1999 ◽  
Vol 277 (5) ◽  
pp. E920-E926 ◽  
Author(s):  
Joyce M. Richey ◽  
Marilyn Ader ◽  
Donna Moore ◽  
Richard N. Bergman

We set out to examine whether angiotensin-driven hypertension can alter insulin action and whether these changes are reflected as changes in interstitial insulin (the signal to which insulin-sensitive cells respond to increase glucose uptake). To this end, we measured hemodynamic parameters, glucose turnover, and insulin dynamics in both plasma and interstitial fluid (lymph) during hyperinsulinemic euglycemic clamps in anesthetized dogs, with or without simultaneous infusions of angiotensin II (ANG II). Hyperinsulinemia per se failed to alter mean arterial pressure, heart rate, or femoral blood flow. ANG II infusion resulted in increased mean arterial pressure (68 ± 16 to 94 ± 14 mmHg, P < 0.001) with a compensatory decrease in heart rate (110 ± 7 vs. 86 ± 4 mmHg, P < 0.05). Peripheral resistance was significantly increased by ANG II from 0.434 to 0.507 mmHg ⋅ ml−1⋅ min ( P < 0.05). ANG II infusion increased femoral artery blood flow (176 ± 4 to 187 ± 5 ml/min, P < 0.05) and resulted in additional increases in both plasma and lymph insulin (93 ± 20 to 122 ± 13 μU/ml and 30 ± 4 to 45 ± 8 μU/ml, P < 0.05). However, glucose uptake was not significantly altered and actually had a tendency to be lower (5.9 ± 1.2 vs. 5.4 ± 0.7 mg ⋅ kg−1⋅ min−1, P > 0.10). Mimicking of the ANG II-induced hyperinsulinemia resulted in an additional increase in glucose uptake. These data imply that ANG II induces insulin resistance by an effect independent of a reduction in interstitial insulin.


1989 ◽  
Vol 256 (6) ◽  
pp. R1340-R1347 ◽  
Author(s):  
T. Kitanaka ◽  
R. D. Gilbert ◽  
L. D. Longo

To determine the maternal cardiovascular responses to long-term hypoxemia, we studied three groups of animals: 1) pregnant ewes (n = 20) at 110-115 days gestation subjected to hypoxia for up to 28 days; 2) pregnant ewes (n = 4) that served as normoxic controls; and 3) nonpregnant ewes (n = 6) subjected to hypoxemia for up to 28 days. We measured mean arterial pressure, heart rate, uterine blood flow, and uterine vascular resistance continuously for 1 h/day while the ewe was exposed to an inspired O2 fraction of 12-13% for at least 17 days. Arterial PO2, O2 saturation, hemoglobin, arteriovenous O2 difference, and uterine O2 uptake were measured daily while blood volume and erythropoietin concentration were measured weekly. In the pregnant hypoxic group arterial PO2 decreased from a control value of 101.5 +/- 5.1 to 59.2 +/- 5.1 Torr within a few minutes, where it remained throughout the study. The hemoglobin concentration increased from 8.9 +/- 0.5 to 10.0 +/- 0.5 g/dl within 24 h where it remained, whereas erythropoietin concentration increased from 16.6 +/- 2.1 to 39.1 +/- 7.8 mU/ml at 24 h but then returned to near-control levels. Arterial glucose concentration, mean arterial pressure, and cardiac output decreased slightly but insignificantly. In contrast, body weight, heart rate, blood volume, uterine blood flow, uterine O2 flow, uteroplacental O2 uptake, and the concentrations of catecholamines and cortisol remained relatively constant. Thus both pregnant and nonpregnant sheep experience relatively minor cardiovascular and hematologic responses in response to long-term hypoxemia of moderate severity.


1986 ◽  
Vol 250 (1) ◽  
pp. H76-H81 ◽  
Author(s):  
O. L. Woodman ◽  
J. Amano ◽  
T. H. Hintze ◽  
S. F. Vatner

Changes in arterial and coronary sinus concentrations of norepinephrine (NE) and epinephrine (E) in response to hemorrhage were examined in conscious dogs. Hemorrhage (45 +/- 3.2 ml/kg) decreased mean arterial pressure by 47 +/- 6%, left ventricular (LV) dP/dt by 38 +/- 6%, and mean left circumflex coronary blood flow by 47 +/- 6%, while heart rate increased by 44 +/- 13%. Increases in concentrations of arterial NE (5,050 +/- 1,080 from 190 +/- 20 pg/ml) and E (12,700 +/- 3,280 from 110 +/- 20 pg/ml) were far greater than increases in coronary sinus NE (1,700 +/- 780 from 270 +/- 50 pg/ml) and E (4,300 +/- 2,590 from 90 +/- 10 pg/ml). Net release of NE from the heart at rest was converted to a fractional extraction of 66 +/- 9% after hemorrhage. Fractional extraction of E increased from 16 +/- 6% at rest to 73 +/- 8% after hemorrhage. In cardiac-denervated dogs, hemorrhage (46 +/- 2.8 ml/kg) decreased mean arterial pressure by 39 +/- 15%, LV dP/dt by 36 +/- 10%, and mean left circumflex coronary blood flow by 36 +/- 13%, while heart rate increased by 24 +/- 10%. Hemorrhage increased arterial NE (1,740 +/- 150 from 210 +/- 30 pg/ml) and E (3,050 +/- 880 from 140 +/- 20 pg/ml) more than it increased coronary sinus NE (460 +/- 50 from 150 +/- 30 pg/ml) and E (660 +/- 160 from 90 +/- 20 pg/ml) but significantly less (P less than 0.05) than observed in intact dogs. These experiments indicate that hemorrhage, unlike exercise and sympathetic nerve stimulation, does not induce net overflow of NE from the heart.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 73 (4) ◽  
pp. 1232-1237 ◽  
Author(s):  
C. G. Tankersley ◽  
D. H. Zappe ◽  
T. G. Meister ◽  
W. L. Kenney

Elevated body core temperature stimulates cutaneous vasodilation, which can be modified by nonthermal factors. To test whether hypohydration affects forearm vascular conductance discretely from relative alterations in heart rate (HR), eight trained cyclists exercised progressively for 20 min each at 60, 120, and 180 W [approximately 22, 37, and 55% of maximal cycling O2 consumption (VO2peak), respectively] in a warm humid environment (dry bulb temperature 30 degrees C; wet bulb temperature 24 degrees C). Esophageal temperature and forearm blood flow were measured every 30 s, and mean arterial pressure and HR were measured at rest and during each exercise intensity (minutes 15, 35, and 55). In the hypovolemic (HP) compared with the euvolemic (EU) state, blood volume was contracted by 24-h fluid restriction an average of 510 ml, and this difference was sustained throughout exercise. The esophageal temperature and HR responses were similar between EU and HP states at 60 and 120 W but were significantly (P < 0.05) higher in HP by the end of 180 W. In contrast, the forearm blood flow response was significantly (P < 0.05) depressed during exercise at 120 and 180 W in HP, whereas mean arterial pressure remained similar between conditions. When body core temperature is elevated in a hypohydrated state, forearm vascular conductance is reduced at exercise intensities of approximately 37% VO2peak, which is independent of relative changes in HR. These findings are consistent with the notion that during exercise an attenuated cutaneous vasodilation is elicited by alterations in regionalized sympathetic outflow, which is unaccompanied by activation of cardiac pacemaker cells.


Cephalalgia ◽  
2019 ◽  
Vol 40 (3) ◽  
pp. 266-277
Author(s):  
Willebrordus PJ van Oosterhout ◽  
Guus G Schoonman ◽  
Dirk P Saal ◽  
Roland D Thijs ◽  
Michel D Ferrari ◽  
...  

Introduction Migraine and vasovagal syncope are comorbid conditions that may share part of their pathophysiology through autonomic control of the systemic circulation. Nitroglycerin can trigger both syncope and migraine attacks, suggesting enhanced systemic sensitivity in migraine. We aimed to determine the cardiovascular responses to nitroglycerin in migraine. Methods In 16 women with migraine without aura and 10 age- and gender-matched controls without headache, intravenous nitroglycerin (0.5 µg·kg−1·min−1) was administered. Finger photoplethysmography continuously assessed cardiovascular parameters (mean arterial pressure, heart rate, cardiac output, stroke volume and total peripheral resistance) before, during and after nitroglycerin infusion. Results Nitroglycerin provoked a migraine-like attack in 13/16 (81.2%) migraineurs but not in controls ( p = .0001). No syncope was provoked. Migraineurs who later developed a migraine-like attack showed different responses in all parameters vs. controls (all p < .001): The decreases in cardiac output and stroke volume were more rapid and longer lasting, heart rate increased, mean arterial pressure and total peripheral resistance were higher and decreased steeply after an initial increase. Discussion Migraineurs who developed a migraine-like attack in response to nitroglycerin showed stronger systemic cardiovascular responses compared to non-headache controls. The stronger systemic cardiovascular responses in migraine suggest increased systemic sensitivity to vasodilators, possibly due to insufficient autonomic compensatory mechanisms.


2006 ◽  
Vol 291 (3) ◽  
pp. H1065-H1073 ◽  
Author(s):  
Anna M. Rogers ◽  
Natasha R. Saunders ◽  
Kyra E. Pyke ◽  
Michael E. Tschakovsky

We tested the hypothesis that vasoregulatory mechanisms exist in humans that can rapidly adjust muscle blood flow to repeated increases and decreases in exercise intensity. Six men and seven women (age, 24.4 ± 1.3 yr) performed continuous dynamic forearm handgrip contractions (1- to 2-s contraction-to-relaxation duty cycle) during repeated step increases and decreases in contraction intensity. Three step change oscillation protocols were examined: Slow (7 contractions per contraction intensity × 10 steps); Fast (2 contractions per contraction intensity × 15 steps); and Very Fast (1 contraction per contraction intensity × 15 steps). Forearm blood flow (FBF; Doppler and echo ultrasonography), heart rate (ECG), and mean arterial pressure (arterial tonometry) were examined for the equivalent of a cardiac cycle during each relaxation phase (FBFrelax). Mean arterial pressure and heart rate did not change during repeated step changes ( P = 0.352 and P = 0.190). For both Slow and Fast conditions, relaxation phase FBFrelax adjusted immediately and repeatedly to both increases and decreases in contraction intensity, and the magnitude and time course of FBFrelax changes were virtually identical. For the Very Fast condition, FBFrelax increased with the first contraction and thereafter slowly increased over the course of repeated contraction intensity oscillations. We conclude that vasoregulatory mechanisms exist in human skeletal muscle that are capable of rapidly and repeatedly adjusting muscle blood flow with ongoing step changes in contraction intensity. Importantly, they demonstrate symmetry in response magnitude and time course with increasing versus decreasing contraction intensity but cannot adjust to very fast exercise intensity oscillations.


1985 ◽  
Vol 249 (1) ◽  
pp. R85-R90
Author(s):  
H. J. Lenz ◽  
L. A. Fisher ◽  
W. W. Vale ◽  
M. R. Brown

Corticotropin-releasing factor (CRF), sauvagine (SVG), and urotensin I (UI) were tested for their effects on superior mesenteric blood flow in conscious dogs. Intravenous (iv) administration of CRF, SVG, and UI induced an immediate rise of mesenteric blood flow that was associated with a decrease in mean arterial pressure and an increase in heart rate. Intracerebroventricular (ICV) injection of SVG and UI, but not CRF, rapidly (within 5 min after injection) elicited a long (90 min) elevation of mesenteric blood flow. Central administration of these peptides induced a delayed rise in heart rate and slightly elevated mean arterial pressure. The finding that CRF given ICV did not increase mesenteric blood flow could not be explained by the release of vasoactive agents such as vasopressin, epinephrine, or norepinephrine. After injection of CRF, SVG, and UI, plasma concentrations of CRF-, SVG-, and UI-like immunoreactivity did not increase as determined by radioimmunoassay. These results indicate that SVG and UI, but not CRF, administered ICV produce a long increase of mesenteric blood flow in conscious dogs. Because iv SVG and UI decrease mean arterial pressure and ICV SVG and UI increase mean arterial pressure and do not cause an increase in SVG- and UI-like immunoreactivity in the peripheral circulation, it is proposed that SVG and UI injected into the third cerebral ventricle act within the central nervous system to increase superior mesenteric blood flow in the dog.


2006 ◽  
Vol 290 (4) ◽  
pp. R1020-R1026 ◽  
Author(s):  
Lachlan M. McDowall ◽  
Jouji Horiuchi ◽  
Suzanne Killinger ◽  
Roger A. L. Dampney

Neurons within the dorsomedial hypothalamic nucleus (DMH) and perifornical area (PeF), which lie within the classic hypothalamic defense area, subserve the cardiovascular response to psychological stress. Previous studies have shown that electrical stimulation of the hypothalamic defense area causes inhibition of the cardiac and (in some cases) sympathetic components of the baroreceptor reflex. In contrast, naturally evoked psychological stress does not appear to be associated with such inhibition. In this study, we tested the effect of specific activation of neurons within the DMH and PeF on the baroreflex control of renal sympathetic nerve activity and heart rate in urethane-anesthetized rats. Microinjection of bicuculline (a GABAA receptor antagonist) into the DMH caused dose-dependent increases in heart rate and renal sympathetic activity, shifted the baroreflex control of both variables to higher levels (i.e., increased the upper and lower plateaus of the baroreflex function curves, and increased the threshold, midpoint, and saturation levels of mean arterial pressure). The maximum gain of the sympathetic component of the baroreflex was also increased, while that of the cardiac component was not significantly changed. Increases in the midpoint were very similar in magnitude to the evoked increases in baseline mean arterial pressure. Microinjection of bicuculline into the PeF evoked very similar effects. The results indicate that disinhibition of neurons in the DMH/PeF region not only increases sympathetic vasomotor activity and heart rate but also resets the baroreceptor reflex such that it remains effective, without any decrease in sensitivity, over a higher operating range of arterial pressure.


2021 ◽  
Vol 71 (Suppl-1) ◽  
pp. S180-85
Author(s):  
Moazzam Ali ◽  
Maliha Khawar ◽  
Maryam Nazneen ◽  
Zaqawat Nazneen

Objective: To compare the hemodynamic response between flexible fiber optic bronchoscope (FOB) andMacintosh laryngoscope during orotracheal intubation. The secondary objective was to calculate the timerequired for intubation between these two techniques Study Design: Quasi experimental study. Place and Duration of Study: Department of Anesthesia, Frontier Corps Hospital Quetta, from Oct 2016 to Apr2017. Methodology: Eighty patients fulfilling the inclusion/exclusion criteria were included in this study and weredivided randomly into two groups. Group L was intubated with Macintosh laryngoscope (control group) whereas group F was intubated with Fiber optic bronchoscope. Mean arterial pressure and heart rate was recorded as baseline, pre-intubation and then every 01 minute for 03 minutes. Changes in heart rate and mean arterial pressure were recorded in the proforma by another anesthetist who was blinded to the procedure performed. Results: The mean age in group L was 41.23 ± 8.37 years and in group F was 40.73 ± 9.77 years. The mean weight in group L was 69.63 ± 8.92 kg and in group F was 70.6 ± 9.20 kg. In group L, male to female ratio was 26:14 whereas in group F it was 28:12. Mean heart rate and mean arterial pressure did not show significant change over time between groups. Time required for intubation was significantly less (22.45 ± 4.12 secs) in laryngoscopy group versus Fiber-Optic Bronchoscope group (44.68 ± 5.88 secs). Conclusion: In conclusion we can say that our study demonstrated that using laryngoscope or Fiber-OpticBronchoscope for orotracheal..........


1994 ◽  
Vol 76 (5) ◽  
pp. 2047-2053 ◽  
Author(s):  
N. M. Dietz ◽  
J. M. Rivera ◽  
D. O. Warner ◽  
M. J. Joyner

The neurotransmitter responsible for neurogenic vasodilation in human skin during body heating is unknown. We sought to determine whether the vasodilating substance nitric oxide (NO) is involved in this phenomenon. Six subjects were heated for 50 min by use of a water-perfused suit while forearm blood flow (FBF) was measured with plethysmography and skin blood flow (SkBF) was measured by the laser-Doppler method in both arms. In one forearm, NG-monomethyl-L-arginine (L-NMMA), an NO synthase blocker, was infused into the brachial artery. Bolus doses of L-NMMA (< or = 4 mg/min) for 5 min were given to blunt NO-mediated vasodilator responses to acetylcholine (ACh, 64 micrograms/min). A continuous infusion of L-NMMA (< or = 1.0 mg/min) was used during body heating to maintain NO synthase blockade. In the forearm receiving L-NMMA, FBF was 1.8 +/- 0.3 ml.100 ml-1.min-1 before drug infusion and rose to 9.5 +/- 1.3 ml.100 ml-1.min-1 with ACh. After L-NMMA infusion, FBF was 1.3 +/- 0.2 ml.100 ml-1.min-1 and rose to 2.6 +/- 0.4 ml.100 ml-1.min-1 with ACh (both P < 0.05 vs. pre-L-NMMA). Similar changes in SkBF were seen with ACh and L-NMMA, confirming that the drugs reached cutaneous vessels. With body heating, oral temperature increased by 1.2 degrees C, heart rate increased by 34 beats/min, and mean arterial pressure remained constant at approximately 75 mmHg. FBF in the treated forearm rose to 11.5 +/- 2.1 vs. 12.6 +/- 1.7 ml.100 ml-1.min-1 in the control forearm (P > 0.05, control vs. treated response).(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document