Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise

1993 ◽  
Vol 74 (1) ◽  
pp. 245-250 ◽  
Author(s):  
P. L. Madsen ◽  
B. K. Sperling ◽  
T. Warming ◽  
J. F. Schmidt ◽  
N. H. Secher ◽  
...  

Results obtained by the 133Xe clearance method with external detectors and by transcranial Doppler sonography (TCD) suggest that dynamic exercise causes an increase of global average cerebral blood flow (CBF). These data are contradicted by earlier data obtained during less-well-defined conditions. To investigate this controversy, we applied the Kety-Schmidt technique to measure the global average levels of CBF and cerebral metabolic rate of oxygen (CMRO2) during rest and dynamic exercise. Simultaneously with the determination of CBF and CMRO2, we used TCD to determine mean maximal flow velocity in the middle cerebral artery (MCA Vmean). For values of CBF and MCA Vmean a correction for an observed small drop in arterial PCO2 was carried out. Baseline values for global CBF and CMRO2 were 50.7 and 3.63 ml.100 g-1.min-1, respectively. The same values were found during dynamic exercise, whereas a 22% (P < 0.0001) increase in MCA Vmean was observed. Hence, the exercise-induced increase in MCA Vmean is not a reflection of a proportional increase in CBF.

Author(s):  
Renaldo Faber ◽  
Kai-Sven Heling ◽  
Horst Steiner ◽  
Ulrich Gembruch

AbstractThis second part on Doppler sonography in prenatal medicine and obstetrics reviews its clinical applications. While this has not become the initially anticipated screening tool, it is used for the diagnosis and surveillance of a variety of fetal pathologies. For example, the sonography-based determination of uterine artery blood flow indices is an important parameter for the first trimester multimodal preeclampsia risk assessment, increasing accuracy and providing indication for the prophylactic treatment with aspirin. It also has significant implications for the diagnosis and surveillance of growth-restricted fetuses in the second and third trimesters through Doppler-sonographic analysis of umbilical artery, middle cerebral artery and ductus venosus. Here, especially the hemodynamics of the ductus venosus provides a critical criterium for birth management of severe, early-onset FGR before 34 + 0 weeks of gestation. Further, determination of maximum blood flow velocity of the middle cerebral artery is a central parameter in fetal diagnosis of anemia which has been significantly improved by this analysis. However, it is important to note that the mentioned improvements can only be achieved through highest methodological quality. Importantly, all these analyses are also applied to twins and higher order multiples. Here, for the differential diagnosis of specific complications such as TTTS, TAPS and TRAP, the application of Doppler sonography has become indispensable. To conclude, the successful application of Doppler sonography requires both exact methodology and precise pathophysiological interpretation of the data.


1995 ◽  
Vol 80 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Andreas Weyland ◽  
Heidrun Stephan ◽  
Frank Grune ◽  
Wolfgang Weyland ◽  
Hans Sonntag

1999 ◽  
Vol 91 (3) ◽  
pp. 677-677 ◽  
Author(s):  
Basil F. Matta ◽  
Karen J. Heath ◽  
Kate Tipping ◽  
Andrew C. Summors

Background The effect of volatile anesthetics on cerebral blood flow depends on the balance between the indirect vasoconstrictive action secondary to flow-metabolism coupling and the agent's intrinsic vasodilatory action. This study compared the direct cerebral vasodilatory actions of 0.5 and 1.5 minimum alveolar concentration (MAC) sevoflurane and isoflurane during an propofol-induced isoelectric electroencephalogram. Methods Twenty patients aged 20-62 yr with American Society of Anesthesiologists physical status I or II requiring general anesthesia for routine spinal surgery were recruited. In addition to routine monitoring, a transcranial Doppler ultrasound was used to measure blood flow velocity in the middle cerebral artery, and an electroencephalograph to measure brain electrical activity. Anesthesia was induced with propofol 2.5 mg/kg, fentanyl 2 micro/g/kg, and atracurium 0.5 mg/kg, and a propofol infusion was used to achieve electroencephalographic isoelectricity. End-tidal carbon dioxide, blood pressure, and temperature were maintained constant throughout the study period. Cerebral blood flow velocity, mean blood pressure, and heart rate were recorded after 20 min of isoelectric encephalogram. Patients were then assigned to receive either age-adjusted 0.5 MAC (0.8-1%) or 1.5 MAC (2.4-3%) end-tidal sevoflurane; or age-adjusted 0.5 MAC (0.5-0.7%) or 1.5 MAC (1.5-2%) end-tidal isoflurane. After 15 min of unchanged end-tidal concentration, the variables were measured again. The concentration of the inhalational agent was increased or decreased as appropriate, and all measurements were repeated again. All measurements were performed before the start of surgery. An infusion of 0.01% phenylephrine was used as necessary to maintain mean arterial pressure at baseline levels. Results Although both agents increased blood flow velocity in the middle cerebral artery at 0.5 and 1.5 MAC, this increase was significantly less during sevoflurane anesthesia (4+/-3 and 17+/-3% at 0.5 and 1.5 MAC sevoflurane; 19+/-3 and 72+/-9% at 0.5 and 1.5 MAC isoflurane [mean +/- SD]; P&lt;0.05). All patients required phenylephrine (100-300 microg) to maintain mean arterial pressure within 20% of baseline during 1.5 MAC anesthesia. Conclusions In common with other volatile anesthetic agents, sevoflurane has an intrinsic dose-dependent cerebral vasodilatory effect. However, this effect is less than that of isoflurane.


Sign in / Sign up

Export Citation Format

Share Document