Effect of increased muscle temperature on oxygen uptake kinetics during exercise

1997 ◽  
Vol 83 (4) ◽  
pp. 1333-1338 ◽  
Author(s):  
Shunsaku Koga ◽  
Tomoyuki Shiojiri ◽  
Narihiko Kondo ◽  
Thomas J. Barstow

Koga, Shunsaku, Tomoyuki Shiojiri, Narihiko Kondo, and Thomas J. Barstow. Effect of increased muscle temperature on oxygen uptake kinetics during exercise. J. Appl. Physiol. 83(4): 1333–1338, 1997.—To test whether increased muscle temperature (Tm) would improve O2 uptake (V˙o 2) kinetics, seven men performed transitions from rest to a moderate work rate [below the estimated lactate threshold (LTest)] and a heavy work rate (V˙o 2 = 50% of the difference between LTest and peakV˙o 2) under conditions of normal Tm (N) and increased Tm (H), produced by wearing hot water-perfused pants before exercise. Quadriceps Tm was significantly higher in H, but rectal temperature was similar for the two conditions. There were no significant differences in the amplitudes of the fast component ofV˙o 2 or in the time constants of the on and off transients for moderate and heavy exercise between the two conditions. The increment inV˙o 2 between the 3rd and 6th min of heavy exercise was slightly but significantly smaller for H than for N. These data suggest that elevated Tm before exercise onset, which would have been expected to increase O2 delivery and off-loading to the muscle, had no appreciable effect on the fast exponential component ofV˙o 2 kinetics (invariant time constant). These data further suggest that elevated Tm does not contribute to the slow component of V˙o 2 during heavy exercise.

1998 ◽  
Vol 85 (4) ◽  
pp. 1593-1600
Author(s):  
Guido Ferretti

The following is the abstract of the article discussed in the subsequent letter: Koga, Shunsaku, Tomoyuki Shiojiri, Narihiko Kondo, and Thomas J. Barstow. Effect of increased muscle temperature on oxygen uptake kinetics during exercise. J. Appl. Physiol. 83(4): 1333–1338, 1997.—To test whether increased muscle temperature (Tm) would improve O2 uptake (V˙o 2) kinetics, seven men performed transitions from rest to a moderate work rate [below the estimated lactate threshold (LTest)] and a heavy work rate (V˙o 2 = 50% of the difference between LTest and peakV˙o 2) under conditions of normal Tm (N) and increased Tm (H), produced by wearing hot water-perfused pants before exercise. Quadriceps Tm was significantly higher in H, but rectal temperature was similar for the two conditions. There were no significant differences in the amplitudes of the fast component ofV˙o 2 or in the time constants of the on and off transients for moderate and heavy exercise between the two conditions. The increment inV˙o 2 between the 3rd and 6th min of heavy exercise was slightly but significantly smaller for H than for N. These data suggest that elevated Tm before exercise onset, which would have been expected to increase O2delivery and off-loading to the muscle, had no appreciable effect on the fast exponential component ofV˙o 2 kinetics (invariant time constant). These data further suggest that elevated Tm does not contribute to the slow component ofV˙o 2 during heavy exercise.


2001 ◽  
Vol 90 (5) ◽  
pp. 1700-1706 ◽  
Author(s):  
Craig A. Williams ◽  
Helen Carter ◽  
Andrew M. Jones ◽  
Jonathan H. Doust

The purpose of this study was to compare the kinetics of the oxygen uptake (V˙o 2) response of boys to men during treadmill running using a three-phase exponential modeling procedure. Eight boys (11–12 yr) and eight men (21–36 yr) completed an incremental treadmill test to determine lactate threshold (LT) and maximum V˙o 2. Subsequently, the subjects exercised for 6 min at two different running speeds corresponding to 80% of V˙o 2 at LT (moderate exercise) and 50% of the difference betweenV˙o 2 at LT and maximumV˙o 2 (heavy exercise). For moderate exercise, the time constant for the primary response was not significantly different between boys [10.2 ± 1.0 (SE) s] and men (14.7 ± 2.8 s). The gain of the primary response was significantly greater in boys than men (239.1 ± 7.5 vs. 167.7 ± 5.4 ml · kg−1 · km−1; P < 0.05). For heavy exercise, theV˙o 2 on-kinetics were significantly faster in boys than men (primary response time constant = 14.9 ± 1.1 vs. 19.0 ± 1.6 s; P < 0.05), and the primary gain was significantly greater in boys than men (209.8 ± 4.3 vs. 167.2 ± 4.6 ml · kg−1 · km−1; P < 0.05). The amplitude of theV˙o 2 slow component was significantly smaller in boys than men (19 ± 19 vs. 289 ± 40 ml/min; P < 0.05). The V˙o 2responses at the onset of moderate and heavy treadmill exercise are different between boys and men, with a tendency for boys to have faster on-kinetics and a greater initial increase inV˙o 2 for a given increase in running speed.


2003 ◽  
Vol 21 (1) ◽  
pp. 39-47 ◽  
Author(s):  
ALFREDO SANTALLA ◽  
MARGARITA PÉREZ ◽  
MANUEL MONTILLA ◽  
LÁZARO VICENTE ◽  
RICHARD DAVISON ◽  
...  

2015 ◽  
Vol 40 (9) ◽  
pp. 918-923 ◽  
Author(s):  
Kelly de Jesus ◽  
Ana Sousa ◽  
Karla de Jesus ◽  
João Ribeiro ◽  
Leandro Machado ◽  
...  

Swimming and training are carried out with wide variability in distances and intensities. However, oxygen uptake kinetics for the intensities seen in swimming has not been reported. The purpose of this study was to assess and compare the oxygen uptake kinetics throughout low-moderate to severe intensities during incremental swimming exercise. We hypothesized that the oxygen uptake kinetic parameters would be affected by swimming intensity. Twenty male trained swimmers completed an incremental protocol of seven 200-m crawl swims to exhaustion (0.05 m·s−1 increments and 30-s intervals). Oxygen uptake was continuously measured by a portable gas analyzer connected to a respiratory snorkel and valve system. Oxygen uptake kinetics was assessed using a double exponential regression model that yielded both fast and slow components of the response of oxygen uptake to exercise. From low-moderate to severe swimming intensities changes occurred for the first and second oxygen uptake amplitudes (P ≤ 0.04), time constants (P = 0.01), and time delays (P ≤ 0.02). At the heavy and severe intensities, a notable oxygen uptake slow component (>255 mL·min−1) occurred in all swimmers. Oxygen uptake kinetics whilst swimming at different intensities offers relevant information regarding cardiorespiratory and metabolic stress that might be useful for appropriate performance diagnosis and training prescription.


2016 ◽  
Vol 48 ◽  
pp. 12
Author(s):  
Chad C. Wiggins ◽  
Shane A. Bielko ◽  
Allison J. Campbell ◽  
Timothy D. Mickleborough ◽  
Robert F. Chapman

2008 ◽  
Vol 40 (Supplement) ◽  
pp. S116
Author(s):  
Azmy Faisal ◽  
Andrew D. Robertson ◽  
Keith R. Beavers ◽  
Richard L. Hughson

2006 ◽  
Vol 1 (4) ◽  
pp. 361-374 ◽  
Author(s):  
Stephen B. Draper ◽  
Dan M. Wood ◽  
Jo Corbett ◽  
David V.B. James ◽  
Christopher R. Potter

We tested the hypothesis that prior heavy-intensity exercise reduces the difference between asymptotic oxygen uptake (VO2) and maximum oxygen uptake (VO2max) during exhaustive severe-intensity running lasting ≍2 minutes. Ten trained runners each performed 2 ramp tests to determine peak VO2 (VO2peak) and speed at venti-latory threshold. They performed exhaustive square-wave runs lasting ≍2 minutes, preceded by either 6 minutes of moderate-intensity running and 6 minutes rest (SEVMOD) or 6 minutes of heavy-intensity running and 6 minutes rest (SEVHEAVY). Two transitions were completed in each condition. VO2 was determined breath by breath and averaged across the 2 repeats of each test; for the square-wave test, the averaged VO2 response was then modeled using a monoexponential function. The amplitude of the VO2 response to severe-intensity running was not different in the 2 conditions (SEVMOD vs SEVHEAVY; 3925 ± 442 vs 3997 ± 430 mL/min, P = .237), nor was the speed of the response (τ; 9.2 ± 2.1 vs 10.0 ± 2.1 seconds, P = .177). VO2peak from the square-wave tests was below that achieved in the ramp tests (91.0% ± 3.2% and 92.0% ± 3.9% VO2peak, P < .001). There was no difference in time to exhaustion between conditions (110.2 ± 9.7 vs 111.0 ± 15.2 seconds, P = .813). The results show that the primary VO2 response is unaffected by prior heavy exercise in running performed at intensities at which exhaustion will occur before a slow component emerges.


2008 ◽  
Vol 33 (1) ◽  
pp. 107-117 ◽  
Author(s):  
Nicola Lai ◽  
Melita M. Nasca ◽  
Marco A. Silva ◽  
Fatima T. Silva ◽  
Brian J. Whipp ◽  
...  

The dynamics of the pulmonary oxygen uptake (VO2) responses to square-wave changes in work rate can provide insight into bioenergetic processes sustaining and limiting exercise performance. The dynamic responses at the onset of exercise and during recovery have been investigated systematically and are well characterized at all intensities in adults; however, they have not been investigated completely in adolescents. We investigated whether adolescents display a slow component in their VO2 on- and off-kinetic responses to heavy- and very heavy-intensity exercise, as demonstrated in adults. Healthy African American male adolescents (n = 9, 14–17 years old) performed square-wave transitions on a cycle ergometer (from and to a baseline work rate of 20 W) to work rates of moderate (M), heavy (H), and very heavy (VH) intensity. In all subjects, the VO2 on-kinetics were best described with a single exponential at moderate intensity (τ1, on = 36 ± 11 s) and a double exponential at heavy (τ1, on = 29 ± 9 s; τ2, on = 197 ± 92 s) and very heavy (τ1, on = 36 ± 9 s; τ2, on = 302 ± 14 s) intensities. In contrast, the VO2 off-kinetics were best described with a single exponential at moderate (τ1, off = 48 ± 9 s) and heavy (τ1, off = 53 ± 7 s) intensities and a double exponential at very heavy (τ1, off = 51 ± 3 s; τ2, off = 471 ± 54 s) intensity. In summary, adolescents consistently displayed a slow component during heavy exercise (on- but not off- transition) and very heavy exercise (on- and off-transitions). Although the overall response dynamics in adolescents were similar to those previously observed in adults, their specific characterizations were different, particularly the lack of symmetry between the on- and off-responses.


2004 ◽  
Vol 36 (6) ◽  
pp. 965-972 ◽  
Author(s):  
HELEN CARTER ◽  
JAMIE S. M. PRINGLE ◽  
LES BOOBIS ◽  
ANDREW M. JONES ◽  
JONATHAN H. DOUST

Sign in / Sign up

Export Citation Format

Share Document