Gender differences in airway resistance during sleep

1997 ◽  
Vol 83 (6) ◽  
pp. 1986-1997 ◽  
Author(s):  
John Trinder ◽  
Amanda Kay ◽  
Jan Kleiman ◽  
Judith Dunai

Trinder, John, Amanda Kay, Jan Kleiman, and Judith Dunai.Gender differences in airway resistance during sleep. J. Appl. Physiol. 83(6): 1986–1997, 1997.—At the onset of non-rapid-eye-movement (NREM) sleep there is a fall in ventilation and an increase in upper airway resistance (UAR). In healthy men there is a progressive increase in UAR as NREM sleep deepens. This study compared the pattern of change in UAR and ventilation in 14 men and 14 women (aged 18–25 yr) both during sleep onset and over the NREM phase of a sleep cycle (from wakefulness to slow-wave sleep). During sleep onset, fluctuations between electroencephalographic alpha and theta activity were associated with mean alterations in inspiratory minute ventilation and UAR of between 1 and 4.5 l/min and between 0.70 and 5.0 cmH2O ⋅ l−1 ⋅ s, respectively, with no significant effect of gender on either change ( P > 0.05). During NREM sleep, however, the increment in UAR was larger in men than in women ( P < 0.01), such that the mean levels of UAR at peak flow reached during slow-wave sleep were ∼25 and 10 cmH2O ⋅ l−1 ⋅ s in men and women, respectively. We speculate that the greater increase in UAR in healthy young men may represent a gender-related susceptibility to sleep-disordered breathing that, in conjunction with other predisposing factors, may contribute to the development of obstructive sleep apnea.

1996 ◽  
Vol 81 (1) ◽  
pp. 282-292 ◽  
Author(s):  
A. Kay ◽  
J. Trinder ◽  
Y. Kim

Ventilation (V) decreases during sleep while upper airway resistance (UAR) increases. A number of studies have suggested that in normal healthy individuals the changes in the two variables are reciprocal. Other findings, however, suggest that the relationship between V and UAR may change as non-rapid-eye-movement (NREM) sleep progresses such that most of the change in V occurs early during the sleep period, whereas the most marked changes in UAR occur later during established NREM sleep. However, no study has examined the progressive development of changes in both V and UAR over the NREM sleep period. This study examined V and UAR over one NREM sleep period in two groups of healthy young male subjects: a "slow-wave sleep (SWS) group" (n = 8) in which the subjects obtained the full range of NREM sleep stages from wakefulness to stage 4 NREM sleep and a "no-SWS group" (n = 5) in which the subjects did not attain SWS but spent a prolonged period in stage 2 NREM sleep that was repeatedly interrupted by arousals. Results showed that the most marked changes in V occurred early during the sleep period in association with relatively small increases in UAR. Once NREM sleep became established, further attenuation of V was minimal despite marked and progressive increases in UAR. The progressive increase in UAR occurred in association with increasing delta (0.4- to 3.0-Hz) electroencephalographic activity and did not occur in the no-SWS group. We interpret these findings to indicate that factors in addition to UAR contribute to the reduction in V early in sleep onset, whereas later, during NREM sleep, compensatory mechanisms are activated to allow for maintenance of V in the context of larger increases in UAR.


2000 ◽  
Vol 89 (4) ◽  
pp. 1275-1282 ◽  
Author(s):  
Giora Pillar ◽  
Atul Malhotra ◽  
Robert B. Fogel ◽  
Josee Beauregard ◽  
David I. Slamowitz ◽  
...  

Although pharyngeal muscles respond robustly to increasing Pco 2 during wakefulness, the effect of hypercapnia on upper airway muscle activation during sleep has not been carefully assessed. This may be important, because it has been hypothesized that CO2-driven muscle activation may importantly stabilize the upper airway during stages 3 and 4 sleep. To test this hypothesis, we measured ventilation, airway resistance, genioglossus (GG) and tensor palatini (TP) electromyogram (EMG), plus end-tidal Pco 2(Pet CO2 ) in 18 subjects during wakefulness, stage 2, and slow-wave sleep (SWS). Responses of ventilation and muscle EMG to administered CO2(Pet CO2 = 6 Torr above the eupneic level) were also assessed during SWS ( n = 9) or stage 2 sleep ( n = 7). Pet CO2 increased spontaneously by 0.8 ± 0.1 Torr from stage 2 to SWS (from 43.3 ± 0.6 to 44.1 ± 0.5 Torr, P < 0.05), with no significant change in GG or TP EMG. Despite a significant increase in minute ventilation with induced hypercapnia (from 8.3 ± 0.1 to 11.9 ± 0.3 l/min in stage 2 and 8.6 ± 0.4 to 12.7 ± 0.4 l/min in SWS, P < 0.05 for both), there was no significant change in the GG or TP EMG. These data indicate that supraphysiological levels of Pet CO2 (50.4 ± 1.6 Torr in stage 2, and 50.4 ± 0.9 Torr in SWS) are not a major independent stimulus to pharyngeal dilator muscle activation during either SWS or stage 2 sleep. Thus hypercapnia-induced pharyngeal dilator muscle activation alone is unlikely to explain the paucity of sleep-disordered breathing events during SWS.


2012 ◽  
Vol 112 (3) ◽  
pp. 403-410 ◽  
Author(s):  
Chien-Hung Chin ◽  
Jason P. Kirkness ◽  
Susheel P. Patil ◽  
Brian M. McGinley ◽  
Philip L. Smith ◽  
...  

Defective structural and neural upper airway properties both play a pivotal role in the pathogenesis of obstructive sleep apnea. A more favorable structural upper airway property [pharyngeal critical pressure under hypotonic conditions (passive Pcrit)] has been documented for women. However, the role of sex-related modulation in compensatory responses to upper airway obstruction (UAO), independent of the passive Pcrit, remains unclear. Obese apneic men and women underwent a standard polysomnography and physiological sleep studies to determine sleep apnea severity, passive Pcrit, and compensatory airflow and respiratory timing responses to prolonged periods of UAO. Sixty-two apneic men and women, pairwise matched by passive Pcrit, exhibited similar sleep apnea disease severity during rapid eye movement (REM) sleep, but women had markedly less severe disease during non-REM (NREM) sleep. By further matching men and women by body mass index and age ( n = 24), we found that the lower NREM disease susceptibility in women was associated with an approximately twofold increase in peak inspiratory airflow ( P = 0.003) and inspiratory duty cycle ( P = 0.017) in response to prolonged periods of UAO and an ∼20% lower minute ventilation during baseline unobstructed breathing (ventilatory demand) ( P = 0.027). Thus, during UAO, women compared with men had greater upper airway and respiratory timing responses and a lower ventilatory demand that may account for sex differences in sleep-disordered breathing severity during NREM sleep, independent of upper airway structural properties and sleep apnea severity during REM sleep.


1986 ◽  
Vol 61 (6) ◽  
pp. 2122-2128 ◽  
Author(s):  
D. E. Weese-Mayer ◽  
R. T. Brouillette ◽  
L. M. Klemka ◽  
C. E. Hunt

We previously demonstrated dose-dependent increases in both hypoglossal and phrenic electroneurograms after almitrine in anesthetized, paralyzed, and vagotomized cats. We have now investigated the effect of this peripheral chemoreceptor stimulant on diaphragmatic and genioglossal (GG, an upper airway-maintaining muscle) electromyograms in five unanesthetized, chronically instrumented, spontaneously breathing adult cats during slow-wave sleep. In 12 studies almitrine doses of 1.0–6.0 mg/kg increased inspired minute ventilation (VI), frequency (f), and tidal volume (VT) and decreased expiratory time (TE). However, almitrine doses as high as 6.0 mg/kg failed to augment phasic inspiratory GG activity. To determine why almitrine induced phasic inspiratory upper airway activity in anesthetized, vagotomized cats but not in sleeping cats, additional studies were performed. In four dose-response studies in three pentobarbital-anesthetized cats, almitrine, 1.0–6.0 mg/kg, did not produce phasic inspiratory GG activity. Almitrine did induce phasic inspiratory GG activity in two of three studies in three vagotomized, tracheostomized, alpha-chloralose-urethan-anesthetized cats. These results suggest that almitrine would not be useful in obstructive sleep apnea, yet because almitrine markedly increased VI, f, and VT and decreased TE in unanesthetized sleeping cats the drug may be effective in patients who lack normal central neural respiratory drive, such as the preterm infant.


1998 ◽  
Vol 84 (1) ◽  
pp. 3-12 ◽  
Author(s):  
S. Meza ◽  
E. Giannouli ◽  
M. Younes

Meza, S., E. Giannouli, and M. Younes. Control of breathing during sleep assessed by proportional assist ventilation. J. Appl. Physiol. 84(1): 3–12, 1998.—We used proportional assist ventilation (PAV) to evaluate the sources of respiratory drive during sleep. PAV increases the slope of the relation between tidal volume (Vt) and respiratory muscle pressure output (Pmus). We reasoned that if respiratory drive is dominated by chemical factors, progressive increase of PAV gain should result in only a small increase in Vt because Pmus would be downregulated substantially as a result of small decreases in[Formula: see text]. In the presence of substantial nonchemical sources of drive [believed to be the case in rapid-eye-movement (REM) sleep] PAV should result in a substantial increase in minute ventilation and reduction in [Formula: see text] as the output related to the chemically insensitive drive source is amplified severalfold. Twelve normal subjects underwent polysomnography while connected to a PAV ventilator. Continuous positive air pressure (5.2 ± 2.0 cmH2O) was administered to stabilize the upper airway. PAV was increased in 2-min steps from 0 to 20, 40, 60, 80, and 90% of the subject’s elastance and resistance. Vt, respiratory rate, minute ventilation, and end-tidal CO2pressure were measured at the different levels, and Pmus was calculated. Observations were obtained in stage 2 sleep ( n = 12), slow-wave sleep ( n = 11), and REM sleep ( n = 7). In all cases, Pmus was substantially downregulated with increase in assist so that the increase in Vt, although significant ( P < 0.05), was small (0.08 liter at the highest assist). There was no difference in response between REM and non-REM sleep. We conclude that respiratory drive during sleep is dominated by chemical control and that there is no fundamental difference between REM and non-REM sleep in this regard. REM sleep appears to simply add bidirectional noise to what is basically a chemically controlled respiratory output.


2020 ◽  
Author(s):  
Huy Pho ◽  
Slava Berger ◽  
Carla Freire ◽  
Lenise J Kim ◽  
Mi-Kyung Shin ◽  
...  

ABSTRACTObesity can lead to recurrent upper airway obstruction (obstructive sleep apnea, OSA) during sleep as well as alveolar hypoventilation. We have previously shown that leptin stimulates breathing and treats OSA in leptin-deficient ob/ob mice and leptin-resistant diet-induced obese mice. Our previous data also suggest that leptin’s respiratory effects may occur in the dorsomedial hypothalamus (DMH). We selectively expressed leptin receptor LepRb in the DMH neurons of obese LepRb-deficient db/db mice (LepRb-DMH mice), which hypoventilate at baseline, and showed that intracerebroventricular injection of leptin in these animals increased inspiratory flow, tidal volume and minute ventilation during NREM sleep without any effect on the quality of NREM sleep or CO2 production. Leptin had no effect on upper airway obstruction in LepRb-DMH animals. We conclude that leptin stimulates breathing and treats obesity related hypoventilation acting on LepRb-positive neurons in the DMH.


1990 ◽  
Vol 69 (2) ◽  
pp. 617-624 ◽  
Author(s):  
K. G. Henke ◽  
J. A. Dempsey ◽  
J. M. Kowitz ◽  
J. B. Skatrud

To determine the effects of the sleep-induced increases in upper airway resistance on ventilatory output, we studied five subjects who were habitual snorers but otherwise normal while awake (AW) and during non-rapid-eye-movement (NREM) sleep under the following conditions: 1) stage 2, low-resistance sleep (LRS); 2) stage 3-4, high-resistance sleep (HRS) (snoring); 3) with continuous positive airway pressure (CPAP); 4) CPAP + end-tidal CO2 partial pressure (PETCO2) mode isocapnic to LRS; and 5) CPAP + PETCO2 isocapnic to HRS. We measured ventilatory output via pneumotachograph in the nasal mask, PETCO2, esophageal pressure, inspiratory and expiratory resistance (RL,I and RL,E). Changes in PETCO2 were confirmed with PCO2 measurements in arterialized venous blood in all conditions in one subject. During wakefulness, pulmonary resistance (RL) remained constant throughout inspiration, whereas in stage 2 and especially in stage 3-4 NREM sleep, RL rose markedly throughout inspiration. Expired minute ventilation (VE) decreased by 12% in HRS, and PETCO2 increased in LRS (3.3 Torr) and HRS (4.9 Torr). CPAP decreased RL,I to AW levels and increased end-expiratory lung volume 0.25-0.93 liter. Tidal volume (VT) and mean inspiratory flow rate (VT/TI) increased significantly with CPAP. Inspiratory time (TI) shortened, and PETCO2 decreased 3.6 Torr but remained 1.3 Torr above AW. During CPAP (RL,I equal to AW), with PETCO2 returned to the level of LRS, VT/TI and VE were 83 and 52% higher than during LRS alone. Also on CPAP, with PETCO2 made equal to HRS, VT, VT/TI, and VE were 67, 112, and 67% higher than during HRS alone.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 79 (2) ◽  
pp. 411-419 ◽  
Author(s):  
A. Kay ◽  
J. Trinder ◽  
Y. Kim

Sleep-induced hypoventilation is caused partly by inadequate compensation for elevated upper airway resistance (UAR). Some evidence suggests that the effect of UAR on ventilation may vary among individuals. The relationship between minute ventilation (VI) and UAR was examined in 26 healthy young men (average of 10.12 sleep onsets). Variables were analyzed over transitions between wakefulness (defined by alpha electroencephalographic activity) and sleep (theta electroencephalographic activity). Transitions to sleep were associated with increases in UAR in synchrony with reductions in VI, and equally rapid opposite changes occurred with awakenings. The relationship between the magnitudes of the changes in VI and UAR at transitions varied among subjects, accounting for 30% of the variance for alpha-to-theta transitions and 50% of the variance for theta-to-alpha transitions. Results indicated that, although ventilatory changes during sleep onset are partly a consequence of changes in UAR, alterations in UAR do not account fully for alterations in VI. Other factors that may contribute to ventilatory instability during sleep onset include state-related fluctuations in drive to the primary respiratory muscles and variability in compensatory mechanisms.


1994 ◽  
Vol 77 (5) ◽  
pp. 2285-2290 ◽  
Author(s):  
D. W. Hudgel ◽  
H. B. Hamilton

During spontaneous sleep-induced periodic breathing in elderly subjects, we have found that tidal volume oscillations are related to reciprocal oscillations in upper airway resistance. The purpose of this study was to address the mechanism of the relationship between oscillations in tidal volume and upper airway resistance in elderly subjects with sleep-induced periodic breathing. We hypothesized that the spontaneous periodic breathing observed in non-rapid-eye-movement (NREM) sleep in elderly subjects would be closely related to fluctuations in upper airway resistance and not to changes in central motor drive to ventilatory pump muscles. Therefore, in eight healthy elderly subjects, we measured costal margin chest wall peak moving time average electrical inspiratory activity (CW EMG), ventilation variables, and upper airway resistance during sleep. Five of eight subjects had significant sine wave oscillations in upper airway resistance and tidal volume. For these five subjects, there was a reciprocal exponential relationship between peak upper airway inspiratory resistance and tidal volume or minute ventilation [r = -0.60 +/- 0.20 (SD) (P < 0.05) and -0.55 +/- 0.26 (P < 0.05), respectively], such that as resistance increased, ventilation decreased. The relationship between CW EMG and tidal volume or minute ventilation was quite low (r = 0.12 +/- 0.32 and -0.07 +/- 0.27, respectively). This study demonstrated that oscillations in ventilation during NREM sleep in elderly subjects were significantly related to fluctuations in upper airway resistance but were not related to changes in chest wall muscle electrical activity. Therefore, changes in upper airway caliber likely contribute to oscillations in ventilation seen during sleep-induced periodic breathing in the elderly.


Sign in / Sign up

Export Citation Format

Share Document