scholarly journals Control of breathing during sleep assessed by proportional assist ventilation

1998 ◽  
Vol 84 (1) ◽  
pp. 3-12 ◽  
Author(s):  
S. Meza ◽  
E. Giannouli ◽  
M. Younes

Meza, S., E. Giannouli, and M. Younes. Control of breathing during sleep assessed by proportional assist ventilation. J. Appl. Physiol. 84(1): 3–12, 1998.—We used proportional assist ventilation (PAV) to evaluate the sources of respiratory drive during sleep. PAV increases the slope of the relation between tidal volume (Vt) and respiratory muscle pressure output (Pmus). We reasoned that if respiratory drive is dominated by chemical factors, progressive increase of PAV gain should result in only a small increase in Vt because Pmus would be downregulated substantially as a result of small decreases in[Formula: see text]. In the presence of substantial nonchemical sources of drive [believed to be the case in rapid-eye-movement (REM) sleep] PAV should result in a substantial increase in minute ventilation and reduction in [Formula: see text] as the output related to the chemically insensitive drive source is amplified severalfold. Twelve normal subjects underwent polysomnography while connected to a PAV ventilator. Continuous positive air pressure (5.2 ± 2.0 cmH2O) was administered to stabilize the upper airway. PAV was increased in 2-min steps from 0 to 20, 40, 60, 80, and 90% of the subject’s elastance and resistance. Vt, respiratory rate, minute ventilation, and end-tidal CO2pressure were measured at the different levels, and Pmus was calculated. Observations were obtained in stage 2 sleep ( n = 12), slow-wave sleep ( n = 11), and REM sleep ( n = 7). In all cases, Pmus was substantially downregulated with increase in assist so that the increase in Vt, although significant ( P < 0.05), was small (0.08 liter at the highest assist). There was no difference in response between REM and non-REM sleep. We conclude that respiratory drive during sleep is dominated by chemical control and that there is no fundamental difference between REM and non-REM sleep in this regard. REM sleep appears to simply add bidirectional noise to what is basically a chemically controlled respiratory output.

2000 ◽  
Vol 89 (4) ◽  
pp. 1275-1282 ◽  
Author(s):  
Giora Pillar ◽  
Atul Malhotra ◽  
Robert B. Fogel ◽  
Josee Beauregard ◽  
David I. Slamowitz ◽  
...  

Although pharyngeal muscles respond robustly to increasing Pco 2 during wakefulness, the effect of hypercapnia on upper airway muscle activation during sleep has not been carefully assessed. This may be important, because it has been hypothesized that CO2-driven muscle activation may importantly stabilize the upper airway during stages 3 and 4 sleep. To test this hypothesis, we measured ventilation, airway resistance, genioglossus (GG) and tensor palatini (TP) electromyogram (EMG), plus end-tidal Pco 2(Pet CO2 ) in 18 subjects during wakefulness, stage 2, and slow-wave sleep (SWS). Responses of ventilation and muscle EMG to administered CO2(Pet CO2 = 6 Torr above the eupneic level) were also assessed during SWS ( n = 9) or stage 2 sleep ( n = 7). Pet CO2 increased spontaneously by 0.8 ± 0.1 Torr from stage 2 to SWS (from 43.3 ± 0.6 to 44.1 ± 0.5 Torr, P < 0.05), with no significant change in GG or TP EMG. Despite a significant increase in minute ventilation with induced hypercapnia (from 8.3 ± 0.1 to 11.9 ± 0.3 l/min in stage 2 and 8.6 ± 0.4 to 12.7 ± 0.4 l/min in SWS, P < 0.05 for both), there was no significant change in the GG or TP EMG. These data indicate that supraphysiological levels of Pet CO2 (50.4 ± 1.6 Torr in stage 2, and 50.4 ± 0.9 Torr in SWS) are not a major independent stimulus to pharyngeal dilator muscle activation during either SWS or stage 2 sleep. Thus hypercapnia-induced pharyngeal dilator muscle activation alone is unlikely to explain the paucity of sleep-disordered breathing events during SWS.


1986 ◽  
Vol 61 (6) ◽  
pp. 2122-2128 ◽  
Author(s):  
D. E. Weese-Mayer ◽  
R. T. Brouillette ◽  
L. M. Klemka ◽  
C. E. Hunt

We previously demonstrated dose-dependent increases in both hypoglossal and phrenic electroneurograms after almitrine in anesthetized, paralyzed, and vagotomized cats. We have now investigated the effect of this peripheral chemoreceptor stimulant on diaphragmatic and genioglossal (GG, an upper airway-maintaining muscle) electromyograms in five unanesthetized, chronically instrumented, spontaneously breathing adult cats during slow-wave sleep. In 12 studies almitrine doses of 1.0–6.0 mg/kg increased inspired minute ventilation (VI), frequency (f), and tidal volume (VT) and decreased expiratory time (TE). However, almitrine doses as high as 6.0 mg/kg failed to augment phasic inspiratory GG activity. To determine why almitrine induced phasic inspiratory upper airway activity in anesthetized, vagotomized cats but not in sleeping cats, additional studies were performed. In four dose-response studies in three pentobarbital-anesthetized cats, almitrine, 1.0–6.0 mg/kg, did not produce phasic inspiratory GG activity. Almitrine did induce phasic inspiratory GG activity in two of three studies in three vagotomized, tracheostomized, alpha-chloralose-urethan-anesthetized cats. These results suggest that almitrine would not be useful in obstructive sleep apnea, yet because almitrine markedly increased VI, f, and VT and decreased TE in unanesthetized sleeping cats the drug may be effective in patients who lack normal central neural respiratory drive, such as the preterm infant.


1998 ◽  
Vol 85 (6) ◽  
pp. 2213-2219 ◽  
Author(s):  
Thorsten Schäfer ◽  
Marianne E. Schläfke

Rapid eye movements during rapid-eye-movement (REM) sleep are associated with rapid, shallow breathing. We wanted to know whether this effect persisted during increased respiratory drive by CO2. In eight healthy subjects, we recorded electroencephalographic, electrooculographic, and electromyographic signals, ventilation, and end-tidal[Formula: see text] during the night. Inspiratory[Formula: see text] was changed to increase end-tidal [Formula: see text] by 3 and 6 Torr. During normocapnia, rapid eye movements were associated with a decrease in total breath time by −0.71 ± 0.19 (SE) s ( P < 0.05) because of shortened expiratory time (−0.52 ± 0.08 s, P < 0.001) and with a reduced tidal volume (−89 ± 27 ml, P < 0.05) because of decreased rib cage contribution (−75 ± 18 ml, P < 0.05). Abdominal (−11 ± 16 ml, P = 0.52) and minute ventilation (−0.09 ± 0.21 ml/min, P = 0.66) did not change. In hypercapnia, however, rapid eye movements were associated with a further shortening of total breath time. Abdominal breathing was also inhibited (−79 ± 23 ml, P< 0.05), leading to a stronger inhibition of tidal volume and minute ventilation (−1.84 ± 0.54 l/min, P < 0.05). We conclude that REM-associated respiratory changes are even more pronounced during hypercapnia because of additional inhibition of abdominal breathing. This may contribute to the reduction of the hypercapnic ventilatory response during REM sleep.


1997 ◽  
Vol 83 (6) ◽  
pp. 1986-1997 ◽  
Author(s):  
John Trinder ◽  
Amanda Kay ◽  
Jan Kleiman ◽  
Judith Dunai

Trinder, John, Amanda Kay, Jan Kleiman, and Judith Dunai.Gender differences in airway resistance during sleep. J. Appl. Physiol. 83(6): 1986–1997, 1997.—At the onset of non-rapid-eye-movement (NREM) sleep there is a fall in ventilation and an increase in upper airway resistance (UAR). In healthy men there is a progressive increase in UAR as NREM sleep deepens. This study compared the pattern of change in UAR and ventilation in 14 men and 14 women (aged 18–25 yr) both during sleep onset and over the NREM phase of a sleep cycle (from wakefulness to slow-wave sleep). During sleep onset, fluctuations between electroencephalographic alpha and theta activity were associated with mean alterations in inspiratory minute ventilation and UAR of between 1 and 4.5 l/min and between 0.70 and 5.0 cmH2O ⋅ l−1 ⋅ s, respectively, with no significant effect of gender on either change ( P > 0.05). During NREM sleep, however, the increment in UAR was larger in men than in women ( P < 0.01), such that the mean levels of UAR at peak flow reached during slow-wave sleep were ∼25 and 10 cmH2O ⋅ l−1 ⋅ s in men and women, respectively. We speculate that the greater increase in UAR in healthy young men may represent a gender-related susceptibility to sleep-disordered breathing that, in conjunction with other predisposing factors, may contribute to the development of obstructive sleep apnea.


2018 ◽  
Author(s):  
KyoungBin Im

Parasomnias have long been recognized as part of sleep-related disorders or diseases in the mental disorders classification system such as Diagnostic and Statistical Manual of Mental Disorders. Nevertheless, many parasomnia symptoms are considered as a transient deviation from the norm in otherwise normal subjects due to disrupted status of consciousness. Sleep states are classified as rapid eye movement (REM) sleep and non-REM (NREM) sleep; similarly, parasomnias are classified as NREM-related parasomnias and REM-related parasomnias. NREM-related parasomnias share common pathophysiology of arousal-related phenomenon out of slow-wave sleep. Although listed as REM parasomnia disorders, nightmares and sleep paralysis are still considered comorbid symptoms or signs of other sleep disorders or mental disorders. Only REM sleep behavior disorder (RBD) is considered a relatively homogenous disease entity among all parasomnia diagnoses. Although RBD is the most newly added disorder entity in parasomnias, it is the most rigorously studied parasomnia such as RBD is strongly and clearly associated with concomitant or future developing neurodegenerative disease. This review contains 1 figure, 4 tables, and 18 references. Key Words: confusional arousals, dream enactment, pseudo-RBD, REM sleep behavior disorder, sleep-related eating, sleep terror, sleepwalking


1983 ◽  
Vol 54 (6) ◽  
pp. 1525-1531 ◽  
Author(s):  
E. L. DeWeese ◽  
T. Y. Sullivan ◽  
P. L. Yu

To characterize the ventilatory response to resistive unloading, we studied the effect of breathing 79.1% helium-20.9% oxygen (He-O2) on ventilation and on mouth pressure measured during the first 100 ms of an occluded inspiration (P100) in normal subjects at rest. The breathing circuit was designed so that external resistive loads during both He-O2 and air breathing were similar. Lung resistance, measured in three subjects with an esophageal balloon technique, was reduced by 23 +/- 8% when breathing He-O2. Minute ventilation, tidal volume, respiratory frequency, end-tidal partial pressure of CO2, inspiratory and expiratory durations, and mean inspiratory flow were not significantly different when air was replaced by He-O2. P100, however, was significantly less during He-O2 breathing. We conclude that internal resistive unloading by He-O2 breathing reduces the neuromuscular output required to maintain constant ventilation. Unlike studies involving inhaled bronchodilators, this technique affords a method by which unloading can be examined independent of changes in airway tone.


2012 ◽  
Vol 112 (3) ◽  
pp. 403-410 ◽  
Author(s):  
Chien-Hung Chin ◽  
Jason P. Kirkness ◽  
Susheel P. Patil ◽  
Brian M. McGinley ◽  
Philip L. Smith ◽  
...  

Defective structural and neural upper airway properties both play a pivotal role in the pathogenesis of obstructive sleep apnea. A more favorable structural upper airway property [pharyngeal critical pressure under hypotonic conditions (passive Pcrit)] has been documented for women. However, the role of sex-related modulation in compensatory responses to upper airway obstruction (UAO), independent of the passive Pcrit, remains unclear. Obese apneic men and women underwent a standard polysomnography and physiological sleep studies to determine sleep apnea severity, passive Pcrit, and compensatory airflow and respiratory timing responses to prolonged periods of UAO. Sixty-two apneic men and women, pairwise matched by passive Pcrit, exhibited similar sleep apnea disease severity during rapid eye movement (REM) sleep, but women had markedly less severe disease during non-REM (NREM) sleep. By further matching men and women by body mass index and age ( n = 24), we found that the lower NREM disease susceptibility in women was associated with an approximately twofold increase in peak inspiratory airflow ( P = 0.003) and inspiratory duty cycle ( P = 0.017) in response to prolonged periods of UAO and an ∼20% lower minute ventilation during baseline unobstructed breathing (ventilatory demand) ( P = 0.027). Thus, during UAO, women compared with men had greater upper airway and respiratory timing responses and a lower ventilatory demand that may account for sex differences in sleep-disordered breathing severity during NREM sleep, independent of upper airway structural properties and sleep apnea severity during REM sleep.


1983 ◽  
Vol 55 (4) ◽  
pp. 1113-1119 ◽  
Author(s):  
F. G. Issa ◽  
C. E. Sullivan

The arousal and breathing responses to total airway occlusion during sleep were measured in 12 normal subjects (7 males and 5 females) aged 25-36 yr. Subjects slept while breathing through a specially designed nosemask, which was glued to the nose with medical-grade silicon rubber. The lips were sealed together with a thin layer of Silastic. The nosemask was attached to a wide-bore (20 mm ID) rigid tube to allow a constant-bias flow of room air from a blower. Total airway occlusion was achieved by simultaneously inflating two rubber balloons fixed in the inspiratory and expiratory pipes. A total of 39 tests were done in stage III/IV nonrapid-eye movement (NREM) sleep in 11 subjects and 10 tests in rapid-eye-movement (REM) sleep in 5 subjects. The duration of total occlusion tolerated before arousal from NREM sleep varied widely (range 0.9-67.0 s) with a mean duration of 20.4 +/- 2.3 (SE) s. The breathing response to occlusion in NREM sleep was characterised by a breath-by-breath progressive increase in suction pressure achieved by an increase in the rate of inspiratory pressure generation during inspiration. In contrast, during REM sleep, arousal invariably occurred after a short duration of airway occlusion (mean duration 6.2 +/- 1.2 s, maximum duration 11.8 s), and the occlusion induced a rapid shallow breathing pattern. Our results indicate that total nasal occlusion during sleep causes arousal with the response during REM sleep being more predictable and with a generally shorter latency than that in NREM sleep.


1989 ◽  
Vol 66 (5) ◽  
pp. 2071-2078 ◽  
Author(s):  
W. N. Gardner ◽  
M. S. Meah

We compared respiratory patterning at rest and during steady cycle exercise at work rates of 30, 60, and 90 W in 7 male chronically laryngectomized subjects and 13 normal controls. Breathing was measured with a pneumotachograph and end-tidal PCO2 by mass spectrometer. Inspired air was humidified and enriched to 35% O2. Peak flow, volume, and times for the inspiratory and expiratory half cycles, time for expiratory flow, minute ventilation, and mean inspiratory flow were computer averaged over at least 40 breaths at rest and during the last 2 min of 5-min periods at each work rate. During the transition from rest to exercise and with increasing work rate in both groups, there was an increase in respiratory rate and depth with selective and progressive shortening of expiratory time; these responses were not significantly different between the two groups, but there was a suggestion that respiratory “drive” as quantitated by mean inspiratory flow may limit in the laryngectomized subjects at high work rates. Time for expiratory flow increased on transition from rest to exercise and then decreased in both groups as the work rate increased; it was shorter in the laryngectomy than control group at all levels. In the laryngectomized subjects there was significantly more breath-by-breath scatter in some variables at rest, but there was no difference during exercise. It is concluded that chronic removal of the larynx and upper airways in mildly hyperoxic conscious humans has only subtle and, therefore, functionally insignificant effects on breathing during moderate exercise. Evidence is provided that the upper airways can modulate expiratory flow but not expiratory time during exercise.


2015 ◽  
Vol 118 (4) ◽  
pp. 489-494 ◽  
Author(s):  
Jonathan Cheetham ◽  
Amanda Jones ◽  
Manuel Martin-Flores

Hypercapnia produces a profound effect on respiratory drive and upper airway function to maintain airway patency. Previous work has evaluated the effects of hypercapnia on the sole arytenoid abductor, the posterior cricoarytenoid (PCA), using indirect measures of function, such as electromyography and direct nerve recording. Here we describe a novel method to evaluate PCA function in anesthetized animals and use this method to determine the effects of hypercapnia on PCA function. Eight dogs were anesthetized, and a laryngeal mask airway was used, in combination with high-speed videoendoscopy, to evaluate laryngeal function. A stepwise increase in inspired partial pressure of CO2 produced marked arytenoid abduction above 70-mmHg end-tidal CO2 (ETCO2) ( P < 0.001). Glottic length increased above 80-mmHg ETCO2 ( P < 0.02), and this lead to underrepresentation of changes in glottic area, if standard measures of glottic area (normalized glottic gap area) were used. Use of a known scale to determine absolute glottic area demonstrated no plateau with increasing ETCO2 up to 120 mmHg. Ventilatory parameters also continued to increase with no evidence of a maximal response. In a second anesthetic episode, repeated bursts of transient hypercapnia for 60 s with an ETCO2 of 90 mmHg produced a 43–55% increase in glottic area ( P < 0.001) at or shortly after the end of the hypercapnic burst. A laryngeal mask airway can be used in combination with videoendoscopy to precisely determine changes in laryngeal dimensions with high temporal resolution. Absolute glottic area more precisely represents PCA function than normalized glottic gap area at moderate levels of hypercapnia.


Sign in / Sign up

Export Citation Format

Share Document