Effects of dopamine and domperidone on ventilatory sensitivity to hypoxia after 8 h of isocapnic hypoxia

1999 ◽  
Vol 86 (1) ◽  
pp. 222-229 ◽  
Author(s):  
Michala E. F. Pedersen ◽  
Keith L. Dorrington ◽  
Peter A. Robbins

Acclimatization to altitude involves an increase in the acute hypoxic ventilatory response (AHVR). Because low-dose dopamine decreases AHVR and domperidone increases AHVR, the increase in AHVR at altitude may be generated by a decrease in peripheral dopaminergic activity. The AHVR of nine subjects was determined with and without a prior period of 8 h of isocapnic hypoxia under each of three pharmacological conditions: 1) control, with no drug administered; 2) dopamine (3 μg ⋅ min−1 ⋅ kg−1); and 3) domperidone (Motilin, 40 mg). AHVR increased after hypoxia ( P ≤ 0.001). Dopamine decreased ( P ≤ 0.01), and domperidone increased ( P ≤ 0.005) AHVR. The effect of both drugs on AHVR appeared larger after hypoxia, an observation supported by a significant interaction between prior hypoxia and drug in the analysis of variance ( P ≤ 0.05). Although the increased effect of domperidone after hypoxia of 0.40 l ⋅ min−1 ⋅ %saturation−1[95% confidence interval (CI) −0.11 to 0.92 l ⋅ min−1 ⋅ %−1] did not reach significance, the lower limit for this confidence interval suggests that little of the increase in AHVR after sustained hypoxia was brought about by a decrease in peripheral dopaminergic inhibition.

2004 ◽  
Vol 101 (6) ◽  
pp. 1409-1416 ◽  
Author(s):  
Jaideep J. Pandit ◽  
Ben Moreau ◽  
Simon Donoghue ◽  
Peter A. Robbins

Background The effects of different low-dose volatile agents in blunting the acute hypoxic ventilatory response (AHVR) are variable. Arousal (due to audiovisual stimulation) may prevent isoflurane-induced blunting of AHVR. The purpose of this study was to assess whether this was also the case for halothane. The authors also assessed the effects of pain on the interaction of halothane and AHVR. Methods Step decreases in end-tidal partial pressure of oxygen using dynamic end-tidal forcing were performed from normoxia to hypoxia (50 mmHg) in 10 healthy volunteers, with end-tidal partial pressure of carbon dioxide held 1-2 mmHg above normal, in six protocols: (1) control conditions (darkened, quiet room, eyes closed) without halothane and (2) with 0.1 minimum alveolar concentration (MAC) halothane; (3) audiovisual stimulation (bright room, loud television) without halothane and (4) with 0.1 MAC halothane; (5) pain (electrical stimulation of skin over the tibia to produce a visual analog pain score of 5-6 out of 10) without halothane and (6) with 0.1 MAC halothane. The Bispectral Index of the electroencephalogram was also monitored. Results Halothane did not affect normoxic minute ventilation in any arousal state but significantly reduced the magnitude of AHVR by 50% regardless of the background arousal state (P < 0.001). Bispectral Index values were reduced by halothane only in the absence of arousal (P < 0.003). Both pain and audiovisual stimulation modestly increased normoxic minute ventilation (P < 0.002) and AHVR (P < 0.003). Conclusions Audiovisual stimulation does not prevent the blunting of AHVR by low-dose halothane. This result with halothane differs from previous results with isoflurane. Therefore, different anesthetics interact in different ways with arousal states. This finding raises the possibility that different anesthetics might differentially affect the hypoxic chemoreflex loop or that they might act in the brain at sites separate from the chemoreflex loop, differently to influence the wakefulness drive to ventilation.


1994 ◽  
Vol 76 (1) ◽  
pp. 196-203 ◽  
Author(s):  
M. Yamamoto ◽  
M. Nishimura ◽  
S. Kobayashi ◽  
Y. Akiyama ◽  
K. Miyamoto ◽  
...  

To examine the role of endogenous adenosine in hypoxic ventilatory response, we measured, in nine normal young adults, ventilatory responses to isocapnic progressive hypoxia and subsequent sustained hypoxia [arterial O2 saturation (SaO2); 80%, 20 min] with and without pretreatment with dipyridamole in a double-blind crossover fashion. Dipyridamole, an adenosine uptake blocker, was expected to enhance the effect of endogenous adenosine. Pretreatment with dipyridamole (0.5 mg/kg) significantly augmented the slope of the ventilatory response to isocapnic progressive hypoxia from 0.35 +/- 0.13 (SE) to 0.70 +/- 0.25 l.min-1.%fall of SaO2(-1) (P < 0.01), although there were no significant changes in resting ventilation. On the other hand, minute ventilation, when expressed as a percentage of peak ventilation, declined to 68.4 +/- 4.3% with dipyridamole at the 9–11th min of sustained hypoxia, which was significantly lower than the 90.2 +/- 8.3% with a placebo (P < 0.05), and finally reached 56.1 +/- 7.2% with dipyridamole and 78.7 +/- 9.2% with the placebo (P < 0.1) at the 18–20th min of sustained hypoxia. In an attempt to more specifically examine the role of adenosine, aminophylline (5 mg/kg), an adenosine receptor antagonist, was injected before pretreatment with dipyridamole in four subjects. Aminophylline infusion abolished or at least attenuated the effect of dipyridamole in all four subjects. These data suggest that endogenous adenosine has a modulatory role in hypoxic ventilatory response in adult humans.


1987 ◽  
Vol 63 (3) ◽  
pp. 1100-1106 ◽  
Author(s):  
M. Nishimura ◽  
A. Suzuki ◽  
Y. Nishiura ◽  
H. Yamamoto ◽  
K. Miyamoto ◽  
...  

To assess the effect of brain blood flow on hypoxic ventilatory response, we measured arterial and internal jugular venous blood gases and ventilation simultaneously and repeatedly in eight healthy male humans in two settings: 1) progressive and subsequent sustained hypoxia, and 2) stepwise and progressive hypercapnia. Ventilatory response to progressive isocapnic hypoxia [arterial O2 partial pressure 155.9 +/- 4.0 (SE) to 46.7 +/- 1.5 Torr] was expressed as change in minute ventilation per change in arterial O2 saturation and varied from -0.16 to -1.88 [0.67 +/- 0.19 (SE)] l/min per % among subjects. In the meanwhile, jugular venous PCO2 (PjCO2) decreased significantly from 51.0 +/- 1.1 to 47.3 +/- 1.0 Torr (P less than 0.01), probably due to the increase in brain blood flow, and stayed at the same level during 15 min of sustained hypoxia. Based on the assumption that PjCO2 reflects the brain tissue PCO2, we evaluated the depressant effect of fall in PjCO2 on hypoxic ventilatory response, using a slope for ventilation-PjCO2 line which was determined in the second set of experiments. Hypoxic ventilatory response corrected with this factor was -1.31 +/- 0.33 l/min per %, indicating that this factor modulated hypoxic ventilatory response in humans. The ventilatory response to progressive isocapnic hypoxia did not correlate with this factor but significantly correlated with the withdrawal test (modified transient O2 test), which was performed on a separate day. Accordingly we conclude that an increase in brain blood flow during exposure to moderate hypoxia may substantially attenuate the ventilatory response but that it is unlikely to be the major factor of the interindividual variation of progressive isocapnic hypoxic ventilatory response in humans.


1997 ◽  
Vol 83 (4) ◽  
pp. 1110-1115 ◽  
Author(s):  
Michala E. F. Pedersen ◽  
Keith L. Dorrington ◽  
Peter A. Robbins

Pedersen, Michala E. F., Keith L. Dorrington, and Peter A. Robbins. Effects of haloperidol on ventilation during isocapnic hypoxia in humans. J. Appl. Physiol.83(4): 1110–1115, 1997.—Exposure to isocapnic hypoxia produces an abrupt increase in ventilation [acute hypoxic ventilatory response (AHVR)], which is followed by a subsequent decline [hypoxic ventilatory depression or decline (HVD)]. In cats, both anesthetized and awake, haloperidol has been reported to increase AHVR and almost entirely abolish HVD. To investigate whether this occurs in humans, the ventilatory responses of 15 healthy young volunteers to 20 min of isocapnic hypoxia (end-tidal [Formula: see text] = 50 Torr) were assessed at 1, 2, and 4.5 h after placebo (control) and after oral haloperidol (Seranace, 0.05 mg/kg) on different days. Three subjects were unable to complete the study because of akathisia. AHVR was significantly greater with haloperidol compared with control ( P < 0.01, analysis of variance). However, no significant change in HVD was found [control HVD = 9.3 ± 1.6 (SD) l/min, haloperidol HVD = 9.9 ± 2.1 l/min; P = not significant, analysis of variance]. We conclude that combined central and peripheral dopamine-receptor antagonism in humans with haloperidol produces a similar pattern of change to that reported previously with the peripheral antagonist domperidone. We have been unable to show in humans a decrease in HVD by the centrally acting drug as observed in cats.


Sign in / Sign up

Export Citation Format

Share Document