scholarly journals Prior Exposure To Sustained Hypoxia Impairs The Acute Hypoxic Ventilatory Response In Rat Pups Following Postnatal Chronic Intermittent Hypoxia

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Peter MacFarlane ◽  
Jingning Ao ◽  
Catherine Mayer ◽  
Juliann Di Fiore ◽  
Christopher Wilson ◽  
...  
2003 ◽  
Vol 94 (6) ◽  
pp. 2342-2349 ◽  
Author(s):  
Ying-Jie Peng ◽  
Nanduri R. Prabhakar

Long-term facilitation (LTF) of breathing elicited by episodic hypoxia (EH) is an extensively studied example of plasticity of respiratory motor behavior. Previous studies employed the paradigm of EH wherein each episode of hypoxia was 5 min. This paradigm is rarely encountered in nature. Brief episodes of hypoxia are encountered frequently with recurrent apneas, wherein hypoxic episodes last a few seconds only. Recent studies suggest that chronic intermittent hypoxia (CIH) represents a form of oxidative stress involving reactive O2species. The objectives of the present study were to determine 1) whether acute, repeated, brief EH (15 s) elicit LTF in breathing and 2) whether prior conditioning with CIH modulates acute EH-induced LTF of breathing, and if so whether reactive O2 species are involved. Experiments were performed on anesthetized, vagotomized, paralyzed, and mechanically ventilated rats, and efferent phrenic nerve activity was monitored as an index of respiratory motor output. In control animals, acute EH (15-s hypoxia; 10 episodes; n = 9) increased minute neural respiration, which persisted during 60 min of the posthypoxic period, suggesting LTF of breathing. EH-induced LTF of respiration was markedly augmented in CIH-conditioned animals (15-s hypoxia, 9 episodes/h, 8 h/day for 10 days; n = 9). By contrast, conditioning with a comparable, cumulative duration of sustained hypoxia (4-h hypoxia; n = 8) did not augment LTF elicited by acute EH. Systemic administration of manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (5 mg · kg−1 · day−1for 10 days), a potent scavenger of O[Formula: see text]·, prevented CIH-induced potentiation of LTF ( n = 9). These results demonstrate that 1) acute, brief EH elicits LTF in respiratory motor output; 2) prior conditioning with CIH, but not with comparable, cumulative duration of sustained hypoxia, augments LTF elicited by acute EH; and 3) O[Formula: see text]· radical scavenger prevents CIH-induced potentiation of LTF of respiration.


1999 ◽  
Vol 86 (1) ◽  
pp. 222-229 ◽  
Author(s):  
Michala E. F. Pedersen ◽  
Keith L. Dorrington ◽  
Peter A. Robbins

Acclimatization to altitude involves an increase in the acute hypoxic ventilatory response (AHVR). Because low-dose dopamine decreases AHVR and domperidone increases AHVR, the increase in AHVR at altitude may be generated by a decrease in peripheral dopaminergic activity. The AHVR of nine subjects was determined with and without a prior period of 8 h of isocapnic hypoxia under each of three pharmacological conditions: 1) control, with no drug administered; 2) dopamine (3 μg ⋅ min−1 ⋅ kg−1); and 3) domperidone (Motilin, 40 mg). AHVR increased after hypoxia ( P ≤ 0.001). Dopamine decreased ( P ≤ 0.01), and domperidone increased ( P ≤ 0.005) AHVR. The effect of both drugs on AHVR appeared larger after hypoxia, an observation supported by a significant interaction between prior hypoxia and drug in the analysis of variance ( P ≤ 0.05). Although the increased effect of domperidone after hypoxia of 0.40 l ⋅ min−1 ⋅ %saturation−1[95% confidence interval (CI) −0.11 to 0.92 l ⋅ min−1 ⋅ %−1] did not reach significance, the lower limit for this confidence interval suggests that little of the increase in AHVR after sustained hypoxia was brought about by a decrease in peripheral dopaminergic inhibition.


2007 ◽  
Vol 103 (6) ◽  
pp. 1973-1978 ◽  
Author(s):  
Michael S. Koehle ◽  
A. William Sheel ◽  
William K. Milsom ◽  
Donald C. McKenzie

The purpose of this study was to compare chemoresponses following two different intermittent hypoxia (IH) protocols in humans. Ten men underwent two 7-day courses of poikilocapnic IH. The long-duration IH (LDIH) protocol consisted of daily 60-min exposures to normobaric 12% O2. The short-duration IH (SDIH) protocol comprised twelve 5-min bouts of 12% O2, separated by 5-min bouts of room air, daily. Isocapnic hypoxic ventilatory response (HVR) was measured daily during the protocol and 1 and 7 days following. Hypercapnic ventilatory response (HCVR) and CO2 threshold and sensitivity (by the modified Read rebreathing technique) were measured on days 1, 8, and 14. Following 7 days of IH, the mean HVR was significantly increased from 0.47 ± 0.07 and 0.47 ± 0.08 to 0.70 ± 0.06 and 0.79 ± 0.06 l·min−1·%SaO2−1 (LDIH and SDIH, respectively), where %SaO2 is percent arterial oxygen saturation. The increase in HVR reached a plateau after the third day. One week post-IH, HVR values were unchanged from baseline. HCVR increased from 3.0 ± 0.4 to 4.0 ± 0.5 l·min−1·mmHg−1. In both the hyperoxic and hypoxic modified Read rebreathing tests, the slope of the CO2/ventilation plot was unchanged by either intervention, but the CO2/ventilation curve shifted to the left following IH. There were no correlations between the changes in response to hypoxia and hypercapnia. There were no significant differences between the two IH protocols for any measures, indicating that comparable changes in chemoreflex control occur with either protocol. These results also suggest that the two methods of measuring CO2 response are not completely concordant and that the changes in CO2 control do not correlate with the increase in the HVR.


2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Cecile Julien ◽  
Lalah Niane ◽  
Aida Bairam ◽  
Vincent Joseph

2008 ◽  
Vol 294 (4) ◽  
pp. R1356-R1366 ◽  
Author(s):  
Cécile Julien ◽  
Aida Bairam ◽  
Vincent Joseph

Ventilatory long-term facilitation (LTF; defined as gradual increase of minute ventilation following repeated hypoxic exposures) is well described in adult mammals and is hypothesized to be a protective mechanism against apnea. In newborns, LTF is absent during the first postnatal days, but its precise developmental pattern is unknown. Accordingly, this study describes this pattern of postnatal development. Additionally, we tested the hypothesis that chronic intermittent hypoxia (CIH) from birth alters this development. LTF was estimated in vivo using whole body plethysmography by exposing rat pups at postnatal days 1, 4, and 10 (P1, P4, and P10) to 10 brief hypoxic cycles (nadir 5% O2) and respiratory recordings during the following 2 h (recovery, 21% O2). Under these conditions, ventilatory LTF (gradual increase of minute ventilation during recovery) was clearly expressed in P10 rats but not in P1 and P4. In a second series of experiments, rat pups were exposed to CIH during the first 10 postnatal days (6 brief cyclic exposures at 5% O2 every 6 min followed by 1 h under normoxia, 24 h a day). Compared with P10 control rats, CIH enhanced hypoxic ventilatory response (estimated during the hypoxic cycles) specifically in male rat pups. Ventilatory LTF was drastically reduced in P10 rats exposed to CIH, which was associated with higher apnea frequency during recovery. We conclude that CIH from birth enhances hypoxic chemoreflex and disrupts LTF development, thus likely contributing to increase apnea frequency.


Sign in / Sign up

Export Citation Format

Share Document