scholarly journals Modulation of laryngeal and respiratory pump muscle activities with upper airway pressure and flow

2001 ◽  
Vol 91 (2) ◽  
pp. 897-904 ◽  
Author(s):  
M. H. Stella ◽  
S. J. England

The hypothesis that upper airway (UA) pressure and flow modulate respiratory muscle activity in a respiratory phase-specific fashion was assessed in anesthetized, tracheotomized, spontaneously breathing piglets. We generated negative pressure and inspiratory flow in phase with tracheal inspiration or positive pressure and expiratory flow in phase with tracheal expiration in the isolated UA. Stimulation of UA negative pressure receptors with body temperature air resulted in a 10–15% enhancement of phasic moving-time-averaged posterior cricoarytenoid electromyographic (EMG) activity above tonic levels obtained without pressure and flow in the UA (baseline). Stimulation of UA positive pressure receptors increased phasic moving-time-averaged thyroarytenoid EMG activity above tonic levels by 45% from baseline. The same enhancement of posterior cricoarytenoid or thyroarytenoid EMG activity was observed with the addition of flow receptor stimulation with room temperature air. Tidal volume and diaphragmatic and abdominal muscle activity were unaffected by UA flow and/or pressure, whereas respiratory timing was minimally affected. We conclude that laryngeal afferents, mainly from pressure receptors, are important in modulating the respiratory activity of laryngeal muscles.

1998 ◽  
Vol 85 (3) ◽  
pp. 1135-1141 ◽  
Author(s):  
A. Bradford ◽  
D. McKeogh ◽  
R. G. O’Regan

We compared the effects of CO2 applied continuously and during expiration on laryngeal-receptor activity in paralyzed, artificially ventilated and nonparalyzed, spontaneously breathing cats by using an isolated larynx, artificially ventilated to approximate a normal respiratory cycle. The majority of quiescent negative-pressure and all cold receptors were excited by 5 and 9% CO2 applied both continuously and during expiration. In general, quiescent positive-pressure, tonic negative-pressure, and tonic positive-pressure receptors were inhibited by 5 and 9% CO2 applied continuously and during expiration. There were no significant differences between responses to 5 and 9% CO2 or to continuous and expired CO2 or between paralyzed and nonparalyzed preparations. In conclusion, laryngeal receptors respond to changes in CO2 concentration occurring during a normal respiratory cycle. Because laryngeal-receptor stimulation exerts reflex effects on ventilation and upper airway muscle activity, these results suggest that airway CO2 plays a role in reflex regulation of breathing and upper airway patency.


2001 ◽  
Vol 91 (2) ◽  
pp. 905-911 ◽  
Author(s):  
M. H. Stella ◽  
S. J. England

The hypothesis that respiratory modulation due to upper airway (UA) pressure and flow is dependent on stimulus modality and respiratory phase-specific activation was assessed in anesthetized, tracheotomized, spontaneously breathing piglets. Negative pressure and flow applied to the isolated UA at room or body temperature during inspiration only enhanced posterior cricoarytenoid muscle activity from that present without UA pressure and flow (baseline) by 15–20%. Time shifting the onset of UA flow relative to tracheal flow decreased this enhancement. The same enhancement was observed with oscillatory or constant airflow. UA positive pressure and flow at room or body temperature applied during expiration only enhanced thyroarytenoid muscle activity from baseline by 50–160%. The same enhancement was observed with oscillatory or constant airflow at body temperature. Constant positive pressure and flow enhanced thyroarytenoid muscle activity more than oscillatory pressure and flow at room temperature. We conclude that the respiratory modulation of UA afferents is processed in a phase-specific fashion and is dependent on stimulus modality (tonic vs. phasic).


1984 ◽  
Vol 56 (3) ◽  
pp. 746-752 ◽  
Author(s):  
E. van Lunteren ◽  
W. B. Van de Graaff ◽  
D. M. Parker ◽  
J. Mitra ◽  
M. A. Haxhiu ◽  
...  

The effects of negative pressure applied to just the upper airway on nasal and laryngeal muscle activity were studied in 14 spontaneously breathing anesthetized dogs. Moving average electromyograms were recorded from the alae nasi (AN) and posterior cricoarytenoid (PCA) muscles and compared with those of the genioglossus (GG) and diaphragm. The duration of inspiration and the length of inspiratory activity of all upper airway muscles was increased in a graded manner proportional to the amount of negative pressure applied. Phasic activation of upper airway muscles preceded inspiratory activity of the diaphragm under control conditions; upper airway negative pressure increased this amount of preactivation. Peak diaphragm activity was unchanged with negative pressure, although the rate of rise of muscle activity decreased. The average increases in peak upper airway muscle activity in response to all levels of negative pressure were 18 +/- 4% for the AN, 27 +/- 7% for the PCA, and 122 +/- 31% for the GG (P less than 0.001). Rates of rise of AN and PCA electrical activity increased at higher levels of negative pressure. Nasal negative pressure affected the AN more than the PCA, while laryngeal negative pressure had the opposite effect. The effects of nasal negative pressure could be abolished by topical anesthesia of the nasal passages, while the effects of laryngeal negative pressure could be abolished by either topical anesthesia of the larynx or section of the superior laryngeal nerve. Electrical stimulation of the superior laryngeal nerve caused depression of AN and PCA activity, and hence does not reproduce the effects of negative pressure.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 76 (5) ◽  
pp. 1888-1895 ◽  
Author(s):  
T. Oshima ◽  
M. Sakamoto ◽  
H. Arita

To identify the site for triggering hiccup, we recorded activities from the diaphragm (DIA), posterior cricoarytenoid muscle (PCA) of the larynx, and abdominal muscle (ABD) along with intrapleural pressure (Ppl) in anesthetized spontaneously breathing cats. To directly access the epipharynx and to observe glottic movement, we made a submental opening at the level rostral to the epiglottis. Mechanical stimulation of the epipharynx evoked a fixed motor pattern of hiccup: DIA showed spasmodic discharge, and Ppl exhibited spiky negative pressure swing; phasic (inspiratory) discharge of PCA was inhibited, and glottic adduction was revealed by direct observation; and ABD remained suppressed during this response. Chlorpromazine hydrochloride or CO2 inhalation suppressed the response, and the intensity of the response varied according to phase of the respiratory cycle, being largest at midinspiration and least at midexpiration. These are compatible with clinical data on human hiccup. Mechanical stimulation of various parts other than the epipharynx failed to evoke the hiccuplike response. The triggering site was located in the dorsal wall of the epipharynx overlying the occipital bone. These results indicate that mechanical irritation of the dorsal epipharynx is essential for triggering hiccup.


2003 ◽  
Vol 13 (1) ◽  
pp. 1-8
Author(s):  
A.R. Anker ◽  
A. Ali ◽  
H.E. Arendt ◽  
S.P. Cass ◽  
L.A. Cotter ◽  
...  

Prior work has shown that the vestibular system contributes to regulating activity of upper airway muscles including the tongue protruder muscle genioglossus. The goal of the present experiments was to determine whether electrical vestibular stimulation could potentially be used to alter genioglossal activity in awake animals. Six adult cats were instrumented for recording of EMG activity from genioglossus, abdominal musculature, and triceps. In addition, a silver ball electrode was implanted on the round window for stimulation of vestibular afferents. Subsequently, stimulation and recordings were conducted while animals were awake. In all cases, stimulation using single shocks or trains of pulses > 100 μA in intensity produced responses in all muscles, including genioglossus. The latency of the genioglossal response was approximately 12 msec, and delivering continuous current trains to the labyrinth chronically elevated the muscle's activity. Although a number of muscles were affected by the stimulus, animals experienced no obvious distress or balance disturbances. Vestibular stimulation remained effective in producing genioglossal responses until experiments were discontinued 1–2 months following onset. These data suggest that electrical vestibular stimulation could potentially be used therapeutically to alter upper airway muscle activity.


1984 ◽  
Vol 56 (3) ◽  
pp. 730-736 ◽  
Author(s):  
E. van Lunteren ◽  
K. P. Strohl ◽  
D. M. Parker ◽  
E. N. Bruce ◽  
W. B. Van de Graaff ◽  
...  

The effects of vagally mediated volume-related feedback on the activity of upper airway muscles was assessed in nine pentobarbital-anesthetized, tracheostomized, spontaneously breathing dogs. Moving average electrical activity was recorded before and during single-breath airway occlusions from the genioglossus, posterior cricoarytenoid, and alae nasi muscles and compared with simultaneously recorded tidal volume and electrical activity of the phrenic nerve (6 dogs) or diaphragm (3 dogs). The normally early peak of upper airway muscle activity during unoccluded breaths was delayed to late or end inspiration during occluded breaths. Inspiratory depression started at a lower volume above end-expiratory volume and at an earlier time after inspiratory onset for the upper airway muscles than for the phrenic nerve and the diaphragm. The amount of depression at the end of inspiratory airflow was larger for all of the upper airway muscles than for the phrenic nerve and diaphragm. Depressive effects were most prominent in the genioglossus, followed by the posterior cricoarytenoid and the alae nasi. After vagotomy, depressive effects of volume-related feedback were no longer seen. These results suggest that activity of the upper airway muscles is modulated by vagally mediated feedback, apparently to a larger extent than that of the diaphragm and phrenic nerve.


1994 ◽  
Vol 76 (6) ◽  
pp. 2656-2662 ◽  
Author(s):  
E. B. Gauda ◽  
T. P. Carroll ◽  
A. R. Schwartz ◽  
P. L. Smith ◽  
R. S. Fitzgerald

To investigate the influence of phasic pulmonary stretch receptors (n = 6) and chemoreceptors (n = 7) on the reflex response of the genioglossus (GG) muscle and diaphragm (DIA) to upper airway (UAW) negative pressure, we measured the response of the GG and DIA electromyogram (EMG) to three challenges: 1) negative pressure applied to the UAW during normoxia and hypercapnia, 2) end-expiratory tracheal occlusion, and 3) application of UAW negative pressure simultaneous with tracheal occlusion in spontaneously breathing tracheotomized anesthetized cats. Peak GG EMG was greatest when UAW negative pressure and end-expiratory tracheal occlusion were combined. No GG EMG activity was seen when UAW negative pressure was applied alone unless the animal was vagotomized or hypercapnic. DIA EMG increased in response to UAW negative pressure combined with occlusion. However, the increase in peak GG EMG was significantly greater than for the DIA with the same challenge. DIA EMG amplitude increased in response to occlusion alone but did not change when UAW negative pressure was applied alone. In the cat, phasic feedback from phasic pulmonary stretch receptors is a potent inhibitor of reflex activation of the GG in response to negative pressure applied to the UAW, which can be overridden by an increase in chemoreceptor drive.


1997 ◽  
Vol 106 (11) ◽  
pp. 897-901 ◽  
Author(s):  
Robert G. Berkowitz ◽  
John Chalmers ◽  
Qi-Jian Sun ◽  
Paul M. Pilowsky

An anatomic and electrophysiological study of the rat posterior cricoarytenoid (PCA) muscle is described. The intramuscular nerve distribution of the PCA branch of the recurrent laryngeal nerve was demonstrated by a modified Sihler's stain. The nerve to the PCA was found to terminate in superior and inferior branches with a distribution that appeared to be confined to the PCA muscle. Electromyography (EMG) recordings of PCA muscle activity in anesthetized rats were obtained under stereotaxic control together with measurement of phrenic nerve discharge. A total of 151 recordings were made in 7 PCA muscles from 4 rats. Phasic inspiratory activity with a waveform similar to that of phrenic nerve discharge was found in 134 recordings, while a biphasic pattern with both inspiratory and post-inspiratory peaks was recorded from random sites within the PCA muscle on 17 occasions. The PCA EMG activity commenced 24.6 ± 2.2 milliseconds (p < .0001) before phrenic nerve discharge. The results are in accord with findings of earlier studies that show that PCA muscle activity commences prior to inspiratory airflow and diaphragmatic muscle activity. The data suggest that PCA and diaphragm motoneurons share common or similar medullary pre-motoneurons. The earlier onset of PCA muscle activity may indicate a role for medullary pre-inspiratory neurons in initiating PCA activity.


Sign in / Sign up

Export Citation Format

Share Document