scholarly journals Sympathetic nerve activity and whole body heat stress in humans

2011 ◽  
Vol 111 (5) ◽  
pp. 1329-1334 ◽  
Author(s):  
David A. Low ◽  
David M. Keller ◽  
Jonathan E. Wingo ◽  
R. Matthew Brothers ◽  
Craig G. Crandall

We and others have shown that moderate passive whole body heating (i.e., increased internal temperature ∼0.7°C) increases muscle (MSNA) and skin sympathetic nerve activity (SSNA). It is unknown, however, if MSNA and/or SSNA continue to increase with more severe passive whole body heating or whether these responses plateau following moderate heating. The aim of this investigation was to test the hypothesis that MSNA and SSNA continue to increase from a moderate to a more severe heat stress. Thirteen subjects, dressed in a water-perfused suit, underwent at least one passive heat stress that increased internal temperature ∼1.3°C, while either MSNA ( n = 8) or SSNA ( n = 8) was continuously recorded. Heat stress significantly increased mean skin temperature (Δ∼5°C, P < 0.001), internal temperature (Δ∼1.3°C, P < 0.001), mean body temperature (Δ∼2.0°C, P < 0.001), heart rate (Δ∼40 beats/min, P < 0.001), and cutaneous vascular conductance [Δ∼1.1 arbitrary units (AU)/mmHg, P < 0.001]. Mean arterial blood pressure was well maintained ( P = 0.52). Relative to baseline, MSNA increased midway through heat stress (Δ core temperature 0.63 ± 0.01°C) when expressed as burst frequency (26 ± 14 to 45 ± 16 bursts/min, P = 0.001), burst incidence (39 ± 13 to 48 ± 14 bursts/100 cardiac cyles, P = 0.03), or total activity (317 ± 170 to 489 ± 150 units/min, P = 0.02) and continued to increase until the end of heat stress (burst frequency: 61 ± 15 bursts/min, P = 0.01; burst incidence: 56 ± 11 bursts/100 cardiac cyles, P = 0.04; total activity: 648 ± 158 units/min, P = 0.01) relative to the mid-heating stage. Similarly, SSNA (total activity) increased midway through the heat stress (normothermia; 1,486 ± 472 to mid heat stress 6,467 ± 5,256 units/min, P = 0.03) and continued to increase until the end of heat stress (11,217 ± 6,684 units/min, P = 0.002 vs. mid-heat stress). These results indicate that both MSNA and SSNA continue to increase as internal temperature is elevated above previously reported values.

1999 ◽  
Vol 277 (6) ◽  
pp. H2348-H2352 ◽  
Author(s):  
C. G. Crandall ◽  
R. A. Etzel ◽  
D. B. Farr

Whole body heating decreases central venous pressure (CVP) while increasing muscle sympathetic nerve activity (MSNA). In normothermia, similar decreases in CVP elevate MSNA, presumably via cardiopulmonary baroreceptor unloading. The purpose of this project was to identify whether increases in MSNA during whole body heating could be attributed to cardiopulmonary baroreceptor unloading coincident with the thermal challenge. Seven subjects were exposed to whole body heating while sublingual temperature, skin blood flow, heart rate, arterial blood pressure, and MSNA were monitored. During the heat stress, 15 ml/kg warmed saline was infused intravenously over 7–10 min to increase CVP and load the cardiopulmonary baroreceptors. We reported previously that this amount of saline was sufficient to return CVP to pre-heat stress levels. Whole body heating increased MSNA from 25 ± 3 to 39 ± 3 bursts/min ( P < 0.05). Central blood volume expansion via rapid saline infusion did not significantly decrease MSNA (44 ± 4 bursts/min, P > 0.05 relative to heat stress period) and did not alter mean arterial blood pressure (MAP) or pulse pressure. To identify whether arterial baroreceptor loading decreases MSNA during heat stress, in a separate protocol MAP was elevated via steady-state infusion of phenylephrine during whole body heating. Increasing MAP from 82 ± 3 to 93 ± 4 mmHg ( P < 0.05) caused MSNA to decrease from 36 ± 3 to 15 ± 4 bursts/min ( P < 0.05). These data suggest that cardiopulmonary baroreceptor unloading during passive heating is not the primary mechanism resulting in elevations in MSNA. Moreover, arterial baroreceptors remain capable of modulating MSNA during heat stress.


2002 ◽  
Vol 282 (1) ◽  
pp. R252-R258 ◽  
Author(s):  
Jian Cui ◽  
Thad E. Wilson ◽  
Craig G. Crandall

To identify whether whole body heating alters arterial baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA and beat-by-beat arterial blood pressure were recorded in seven healthy subjects during acute hypotensive and hypertensive stimuli in both normothermic and heat stress conditions. Whole body heating significantly increased sublingual temperature ( P < 0.01), MSNA ( P < 0.01), heart rate ( P< 0.01), and skin blood flow ( P < 0.001), whereas mean arterial blood pressure did not change significantly ( P > 0.05). During both normothermic and heat stress conditions, MSNA increased and then decreased significantly when blood pressure was lowered and then raised via intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure during heat stress (−128.3 ± 13.9 U · beats−1 · mmHg−1) was similar ( P = 0.31) with normothermia (−140.6 ± 21.1 U · beats−1 · mmHg−1). Moreover, no significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. These data suggest that arterial baroreflex modulation of MSNA and heart rate are not altered by whole body heating, with the exception of an upward shift of these baroreflex curves to accommodate changes in these variables that occur with whole body heating.


1991 ◽  
Vol 260 (5) ◽  
pp. R873-R878 ◽  
Author(s):  
D. R. Seals ◽  
D. G. Johnson ◽  
R. F. Fregosi

The primary aim of this study was to determine the influence of systemic hyperoxia on sympathetic nervous system behavior at rest and during submaximal exercise in humans. In seven healthy subjects (aged 19-31 yr) we measured postganglionic sympathetic nerve activity to skeletal muscle (MSNA) in the leg, antecubital venous norepinephrine concentrations, heart rate, and arterial blood pressure during normoxic rest (control) followed by 3- to 4-min periods of either hyperoxic (100% O2 breathing) rest, normoxic exercise (rhythmic handgrips at 50% of maximum force), or hyperoxic exercise. During exercise, isocapnia was maintained by adding CO2 to the inspirate as necessary. At rest, hyperoxia lowered MSNA burst frequency (12-42%) and total activity (6-42%) in all subjects; the average reductions were 25 and 23%, respectively (P less than 0.05 vs. control). Heart rate also decreased during hyperoxia (6 +/- 1 beats/min, P less than 0.05), but arterial blood pressure was not affected. During hyperoxic compared with normoxic exercise, there were no differences in the magnitudes of the increases in MSNA burst frequency or total activity, plasma norepinephrine concentrations, or mean arterial blood pressure. In contrast, the increase in heart rate during hyperoxic exercise (13 +/- 2 beats/min) was less than the increase during normoxic exercise (20 +/- 2 beats/min; P less than 0.05). We conclude that, in healthy humans, systemic hyperoxia 1) lowers efferent sympathetic nerve activity to skeletal muscle under resting conditions without altering venous norepinephrine concentrations and 2) has no obvious modulatory effect on the nonactive muscle sympathetic nerve adjustments to rhythmic exercise.


2009 ◽  
Vol 106 (4) ◽  
pp. 1125-1131 ◽  
Author(s):  
Jian Cui ◽  
Manabu Shibasaki ◽  
Scott L. Davis ◽  
David A. Low ◽  
David M. Keller ◽  
...  

Both whole body heat stress and stimulation of muscle metabolic receptors activate muscle sympathetic nerve activity (MSNA) through nonbaroreflex pathways. In addition to stimulating muscle metaboreceptors, exercise has the potential to increase internal temperature. Although we and others report that passive whole body heating does not alter the gain of the arterial baroreflex, it is unknown whether increased body temperature, often accompanying exercise, affects baroreflex function when muscle metaboreceptors are stimulated. This project tested the hypothesis that whole body heating alters the gain of baroreflex control of muscle sympathetic nerve activity (MSNA) and heart rate during muscle metaboreceptor stimulation engaged via postexercise muscle ischemia (PEMI). MSNA, blood pressure (BP, Finometer), and heart rate were recorded from 11 healthy volunteers. The volunteers performed isometric handgrip exercise until fatigue, followed by 2.5 min of PEMI. During PEMI, BP was acutely reduced and then raised pharmacologically using the modified Oxford technique. This protocol was repeated two to three times when volunteers were normothermic, and again during heat stress (increase core temperature ∼ 0.7°C) conditions. The slope of the relationship between MSNA and BP during PEMI was less negative (i.e., decreased baroreflex gain) during whole body heating when compared with the normothermic condition (−4.34 ± 0.40 to −3.57 ± 0.31 units·beat−1·mmHg−1, respectively; P = 0.015). The gain of baroreflex control of heart rate during PEMI was also decreased during whole body heating ( P < 0.001). These findings indicate that whole body heat stress reduces baroreflex control of MSNA and heart rate during muscle metaboreceptor stimulation.


2008 ◽  
Vol 40 (Supplement) ◽  
pp. S334 ◽  
Author(s):  
David A. Low ◽  
David M. Keller ◽  
Jonathan E. Wingo ◽  
R. Matthew Brothers ◽  
Craig G. Crandall

2009 ◽  
Vol 296 (5) ◽  
pp. R1439-R1444 ◽  
Author(s):  
Jonathan S. Cook ◽  
Chester A. Ray

Previous studies from our laboratory have demonstrated that altering muscle temperature of the exercising forearm can elicit changes in muscle sympathetic nerve activity (MSNA) during ischemic isometric handgrip. The purpose of the current study was to determine the interactive effect of muscle temperature and blood flow on MSNA responses during dynamic handgrip (DHG). Eight subjects performed two bouts of graded DHG to fatigue followed by 2 min of postexercise muscle ischemia (PEMI). Local heating of the forearm increased muscle temperature from 33.6 ± 0.3 to 38.3 ± 0.5°C ( P < 0.05). Mean arterial pressure and heart rate increased in a linear fashion during graded DHG ( P < 0.05) but were not affected by muscle temperature. MSNA (burst frequency and total activity) at fatigue and PEMI were elevated in all conditions ( P < 0.05). However, MSNA responses were not different between temperature conditions. To ascertain the effect of blood flow, eight additional subjects completed two trials of ischemic DHG under control or warm conditions followed by 2 min of PEMI. MSNA, expressed as burst frequency and total activity, was significantly greater in warm compared with the control trial (Δ14 ± 3 and Δ9 ± 2 bursts/30 s, and Δ1,234 ± 260 and Δ751 ± 199 units/30 s, respectively). This finding supports the concept that muscle heating sensitizes skeletal muscle afferents during muscle contractions and augments MSNA in humans. However, on the basis of these findings, we conclude that muscle blood flow modulates the effect of muscle temperature on MSNA during exercise.


2017 ◽  
Vol 312 (6) ◽  
pp. R873-R882 ◽  
Author(s):  
Jian Cui ◽  
John Boehmer ◽  
Cheryl Blaha ◽  
Lawrence I. Sinoway

Heat stress evokes significant increases in muscle sympathetic nerve activity (MSNA) in healthy individuals. The MSNA response to heat stress in chronic heart failure (CHF) is unknown. We hypothesized that the MSNA response to heat stress is attenuated in CHF. Passive whole body heating was applied with water-perfused suits in 13 patients (61 ± 2 yr) with stable class II-III CHF, 12 age-matched (62 ± 2 yr) healthy subjects, and 14 young (24 ± 1 yr) healthy subjects. Mild heating (i.e., increases in skin temperature ΔTsk ~2–4°C, internal temperature ΔTcore <0.3°C) significantly decreased MSNA in CHF patients; however, it did not significantly alter the MSNA in the age-matched and young healthy subjects. Heat stress (i.e., ΔTsk ~4°C and ΔTcore ~0.6°C) raised MSNA in the age-matched (32.9 ± 3.2 to 45.6 ± 4.2 bursts/min; P < 0.001) and young (14.3 ± 1.7 to 26.3 ± 2.4 bursts/min; P < 0.001) controls, but not in CHF (46.2 ± 5.3 to 50.5 ± 5.3 bursts/min; P = 0.06). The MSNA increase by the heat stress in CHF (Δ4.2 ± 2.0 bursts/min) was significantly less than those seen in the age-matched (Δ12.8 ± 1.7 bursts/min, P < 0.05) and young (Δ12.0 ± 2.7 bursts/min, P < 0.05) control groups. These data suggest that the MSNA response to heat stress is attenuated in CHF patients. We speculate that the attenuated MSNA response to heat stress may contribute to impaired cardiovascular adjustments in CHF in a hot environment.


2004 ◽  
Vol 97 (4) ◽  
pp. 1367-1370 ◽  
Author(s):  
Thad E. Wilson ◽  
Chester A. Ray

Both heat stress and vestibular activation alter autonomic responses; however, the interaction of these two sympathetic activators is unknown. To determine the effect of heat stress on the vestibulosympathetic reflex, eight subjects performed static head-down rotation (HDR) during normothermia and whole body heating. Muscle sympathetic nerve activity (MSNA; peroneal microneurography), mean arterial blood pressure (MAP), heart rate (HR), and internal temperature were measured during the experimental trials. HDR during normothermia caused a significant increase in MSNA (Δ5 ± 1 bursts/min; Δ53 ± 14 arbitrary units/min), whereas no change was observed in MAP, HR, or internal temperature. Whole body heating significantly increased internal temperature (Δ0.9 ± 0.1°C), MSNA (Δ10 ± 3 bursts/min; Δ152 ± 44 arbitrary units/min), and HR (Δ25 ± 6 beats/min), but it did not alter MAP. HDR during whole body heating increased MSNA (Δ16 ± 4 bursts/min; Δ233 ± 90 arbitrary units/min from normothermic baseline), which was not significantly different from the algebraic sum of HDR during normothermia and whole body heating (Δ15 ± 4 bursts/min; Δ205 ± 55 arbitrary units/min). These data suggest that heat stress does not modify the vestibulosympathetic reflex and that both the vestibulosympathetic and thermal reflexes are robust, independent sympathetic nervous system activators.


2004 ◽  
Vol 96 (6) ◽  
pp. 2103-2108 ◽  
Author(s):  
Jian Cui ◽  
Thad E. Wilson ◽  
Craig G. Crandall

The purpose of this project was to test the hypothesis that increases in muscle sympathetic nerve activity (MSNA) during an orthostatic challenge is attenuated in heat-stressed individuals. To accomplish this objective, MSNA was measured during graded lower body negative pressure (LBNP) in nine subjects under normothermic and heat-stressed conditions. Progressive LBNP was applied at -3, -6, -9, -12, -15, -18, -21, and -40 mmHg for 2 min per stage. Whole body heating caused significant increases in sublingual temperature, skin blood flow, sweat rate, heart rate, and MSNA (all P < 0.05) but not in mean arterial blood pressure ( P > 0.05). Progressive LBNP induced significant increases in MSNA in both thermal conditions. However, during the heat stress trial, increases in MSNA at LBNP levels higher than -9 mmHg were greater compared with during the same LBNP levels in normothermia (all P < 0.05). These data suggest that the increase in MSNA to orthostatic stress is not attenuated but rather accentuated in heat-stressed humans.


2013 ◽  
Vol 304 (5) ◽  
pp. H759-H766 ◽  
Author(s):  
Seth T. Fairfax ◽  
Jaume Padilla ◽  
Lauro C. Vianna ◽  
Michael J. Davis ◽  
Paul J. Fadel

Previous studies in humans attempting to assess sympathetic vascular transduction have related large reflex-mediated increases in muscle sympathetic nerve activity (MSNA) to associated changes in limb vascular resistance. However, such procedures do not provide insight into the ability of MSNA to dynamically control vascular tone on a beat-by-beat basis. Thus we examined the influence of spontaneous MSNA bursts on leg vascular conductance (LVC) and how variations in MSNA burst pattern (single vs. multiple bursts) and burst size may affect the magnitude of the LVC response. In 11 young men, arterial blood pressure, common femoral artery blood flow, and MSNA were continuously recorded during 20 min of supine rest. Signal averaging was used to characterize percent changes in LVC for 15 cardiac cycles following heartbeats associated with and without MSNA bursts. LVC significantly decreased following MSNA bursts, reaching a nadir during the 6th cardiac cycle (single bursts, −2.9 ± 1.1%; and multiple bursts, −11.0 ± 1.4%; both, P < 0.001). Individual MSNA burst amplitudes and the total amplitude of consecutive bursts were related to the magnitude of peak decreases in LVC. In contrast, cardiac cycles without MSNA bursts were associated with a significant increase in LVC (+3.1 ± 0.5%; P < 0.001). Total vascular conductance decreased in parallel with LVC also reaching a nadir around the peak rise in arterial blood pressure following an MSNA burst. Collectively, these data are the first to assess beat-by-beat sympathetic vascular transduction in resting humans, demonstrating robust and dynamic decreases in LVC following MSNA bursts, an effect that was absent for cardiac cycles without MSNA bursts.


Sign in / Sign up

Export Citation Format

Share Document